Featured Research

from universities, journals, and other organizations

Microwave-assisted method for producing thin films

Date:
December 19, 2012
Source:
University of Texas at Austin
Summary:
Scientists have demonstrated that assembly of so-called thin films is possible at low temperatures. They are working toward the assembly of thin films in a variety of materials.

Growth of new materials is the cornerstone of materials science -- a highly inter-disciplinary field of science that touches every aspect of our lives from computers and cell phones to the clothes we wear. At the same time, the energy crisis has brought the spotlight on synthesis and growth of materials for clean energy technologies, such as solar cells and batteries. However, researchers in these areas do not simply grow materials -- they assemble the atoms and molecules that form so-called thin films on various substrates. It is a process that is highly complex, time-consuming and requires significantly high temperatures.

Now a multidisciplinary team at the University of Texas at Austin's Cockrell School of Engineering is using microwave energy to assemble atoms into thin films and grow them directly onto a substrate at significantly low temperatures. Results of the team's research conducted under the supervisions of Professor Arumugam Manthiram of the Texas Materials Institute and the Department of Mechanical Engineering and Professor Ali Yilmaz of the Department of Electrical and Computer Engineering, were published in the 19th December issue of Nature Publications' online, open-access journal Scientific Reports.

"Lowering the temperature at which thin films of relevant materials can be grown is one of the key focus areas of our research," said Reeja Jayan, postdoctoral fellow at UT-Austin and one of the lead authors of the paper. "With our microwave process, we could bring down temperatures to the level that enable us to grow materials on heat-sensitive surfaces, such as plastics, without damaging them."

The conventional methods for growing thin films typically require temperatures over 450 degrees Celsius for several hours and a cumbersome multi-step process. With the new method, thin films can now be grown at temperatures as low as 150 degree Celsius in less than 30 minutes, in a single step process, by using microwaves.

"With this new method, the process of thin film growth is made simple, wherein a solution containing the atoms of the desired material together with the substrate when exposed to microwaves can result in controlled film growth" said Professor Manthiram who supervised the experimental work. "Applications that could utilize this process include developing thin film batteries and solar cells that could be integrated into various devices like cell phones and tablets."

The team coats a conducting layer -- similar to a metal -- over their substrate, which serves like an antenna to attract the microwaves. The energy from the microwaves then coerces atoms from the solution to "self-assemble" into uniform thin films on the substrate. The local heating generated by the interaction between the microwaves and the metal layer serves to fuse the thin films to the substrate. It is an interaction so powerful that it makes the films strongly adhere to the substrate.

As part of the research, a computational model of the process was developed by the team, which helps better understand the physics behind the microwave interaction phenomena and provides them with predictive guidelines that can significantly reduce the number of experiments needed for future research. The team at UT-Austin has successfully demonstrated assembly of titanium oxide thin films at low temperatures, and is currently working toward the assembly of thin films in a variety of materials.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Reeja-Jayan, Katharine L. Harrison, K. Yang, Chih-Liang Wang, A. E. Yilmaz, Arumugam Manthiram. Microwave-assisted Low-temperature Growth of Thin Films in Solution. Scientific Reports, 2012; 2 DOI: 10.1038/srep01003

Cite This Page:

University of Texas at Austin. "Microwave-assisted method for producing thin films." ScienceDaily. ScienceDaily, 19 December 2012. <www.sciencedaily.com/releases/2012/12/121219133646.htm>.
University of Texas at Austin. (2012, December 19). Microwave-assisted method for producing thin films. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/12/121219133646.htm
University of Texas at Austin. "Microwave-assisted method for producing thin films." ScienceDaily. www.sciencedaily.com/releases/2012/12/121219133646.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins