Featured Research

from universities, journals, and other organizations

Neon lights up exploding stars

Date:
January 15, 2013
Source:
University of York
Summary:
An international team of nuclear astrophysicists has shed new light on the explosive stellar events known as novae. These dramatic explosions are driven by nuclear processes and make previously unseen stars visible for a short time. The team of scientists measured the nuclear structure of the radioactive neon produced through this process in unprecedented detail. Their findings show there is much less uncertainty in how quickly one of the key nuclear reactions will occur as well as in the final abundance of radioactive isotopes than has previously been suggested.

Artistic view of a nova explosion depicting the binary stellar system.
Credit: David A Hardy and STFC

An international team of nuclear astrophysicists has shed new light on the explosive stellar events known as novae.

Related Articles


These dramatic explosions are driven by nuclear processes and make previously unseen stars visible for a short time. The team of scientists measured the nuclear structure of the radioactive neon produced through this process in unprecedented detail.

Their findings, reported in the journal Physical Review Letters, show there is much less uncertainty in how quickly one of the key nuclear reactions will occur as well as in the final abundance of radioactive isotopes than has previously been suggested.

Led by the University of York, UK, and Universitat Politècnica de Catalunya and the Institut d'Estudis Espacials de Catalunya, Spain, the findings will help with the interpretation of future data from gamma ray observing satellites.

While large stars end their lives with spectacular explosions called supernovae, smaller stars, known as white dwarf stars, sometimes experience smaller, but still dramatic explosions called novae. The brightest nova explosions are visible to the naked eye.

A nova occurs when a white dwarf is close enough to a companion star to drag matter -- mostly hydrogen and helium -- from the outer layers of that star onto itself, building up an envelope. When enough material has accumulated on the surface, a burst of nuclear fusion occurs, causing the white dwarf to brighten and expel the remaining material. Within a few days to months, the glow subsides. The phenomenon is expected to recur after typically 10,000 to 100,000 years.

Traditionally novae are observed in the visible and nearby wavelengths, but this emission only shows up about a week after the explosion and therefore only gives partial information on the event.

Dr Alison Laird, from the University of York's Department of Physics, said: "The explosion is fundamentally driven by nuclear processes. The radiation related to the decay of isotopes -- in particular that from an isotope of fluorine -- is actively being sought by current and future gamma ray observing satellite missions as it provides direct insight into the explosion.

"However, to be interpreted correctly, the nuclear reaction rates involved in the production of the fluorine isotope must be known. We have demonstrated that previous assumptions about key nuclear properties are incorrect and have improved our knowledge of the nuclear reaction pathway."

The experimental work was carried out at the Maier-Leibnitz Laboratory in Garching, Germany, and scientists from the University of Edinburgh played a key role in the interpretation of the data. The study also involved scientists from Canada and the United States.

Dr Anuj Parikh, from the Departament de Fisica i Enginyeria Nuclear at the Universitat Politècnica de Catalunya, said: "The observation of gamma-rays from novae would help to better determine exactly what chemical elements are synthesized in these astrophysical explosions. In this work, details required to calculate the production of the key radioactive fluorine isotope have been measured precisely. This will allow more detailed investigation of the processes and reactions behind the nova."

This work is part of an ongoing programme of research studying how the elements are synthesised in stars and stellar explosions.

The UK researchers received funding from the Science Technology Funding Council (STFC), and the project received further support from the Spanish MICINN, the EU Feder funds and ESF EUROCORES Program EuroGENESIS.


Story Source:

The above story is based on materials provided by University of York. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. M. Laird, A. Parikh, A. St. J. Murphy, K. Wimmer, A. A. Chen, C. M. Deibel, T. Faestermann, S. P. Fox, B. R. Fulton, R. Hertenberger, D. Irvine, J. José, R. Longland, D. J. Mountford, B. Sambrook, D. Seiler, and H.-F. Wirth. Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction? Physical Review Letters, 2013 [link]

Cite This Page:

University of York. "Neon lights up exploding stars." ScienceDaily. ScienceDaily, 15 January 2013. <www.sciencedaily.com/releases/2013/01/130115085527.htm>.
University of York. (2013, January 15). Neon lights up exploding stars. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/01/130115085527.htm
University of York. "Neon lights up exploding stars." ScienceDaily. www.sciencedaily.com/releases/2013/01/130115085527.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins