Featured Research

from universities, journals, and other organizations

Small UAV supports development of lightweight sensors

Date:
January 15, 2013
Source:
Georgia Institute of Technology, Research Communications
Summary:
Engineers are developing an airborne testing capability for sensors, communications devices and other payloads. Their aerial test bed is known as the GTRI Airborne Unmanned Sensor System (GAUSS).

The GTRI Airborne Unmanned Sensor System (GAUSS) is used to evaluate sensing devices in airborne testing. The unmanned aerial vehicle, manufactured by Griffon Aerospace and modified by GTRI, has a wingspan of 13.6 feet and can carry a 40-pound payload.
Credit: Georgia Tech Photo: Gary Meek

A research team at the Georgia Tech Research Institute (GTRI) is developing an airborne testing capability for sensors, communications devices and other airborne payloads. This aerial test bed, called the GTRI Airborne Unmanned Sensor System (GAUSS), is based on an unmanned aerial vehicle (UAV) made by Griffon Aerospace and modified by GTRI.

Related Articles


"Developing new sensor technologies that can be effectively employed from the air is a priority today given the rapidly increasing use of unmanned aircraft," said Michael Brinkmann, a GTRI principal research engineer who is leading the work. "Given suitable technology, small UAVs can perform complex, low-altitude missions effectively and at lower cost. The GAUSS system gives GTRI and its customers the ability to develop and test new airborne payloads in a rapid, cost effective way."

The current project includes development, installation and testing of a sensor suite relevant to many of GTRI's customers. This suite consists of a camera package, a signals intelligence package for detecting and locating ground-based emitters, and a multi-channel ground-mapping radar.

The radar is being designed using phased-array antenna technology that enables electronic scanning. This approach is more flexible and agile than traditional mechanically steered antennas.

The combined sensor package is lightweight enough to be carried by the GAUSS UAV, which is a variant of the Griffon Outlaw ER aircraft and has a 13.6-foot wingspan and a payload capacity of approximately 40 pounds.

The aircraft navigates using a high precision global positioning system (GPS) combined with an inertial navigation system. These help guide the UAV, which can be programmed for autonomous flight or piloted manually from the ground. The airborne mission package also includes multi-terabyte onboard data recording and a stabilized gimbal that isolates the camera from aircraft movement.

Heavier sensor designs have several disadvantages, observed Mike Heiges, a principal research engineer who leads the GTRI team that is responsible for flying and maintaining the UAV platform. Larger sensors require larger unmanned aircraft to carry them, and those aircraft use bigger engines and must fly higher to avoid detection.

"Rather than have your design spiral upwards until you're using very large and expensive aircraft, smaller sensors allow the use of smaller aircraft," Heiges said. "A smaller UAV saves money and is logistically easier to support. But most important, it can gather information closer to the tactical level on the ground, where it's arguably most valuable."

The GTRI team has developed a modular design that allows the GAUSS platform to be reconfigured for a number of sensor types. Among the possibilities for evaluation are devices that utilize light detection and ranging (LIDAR) technology and chemical-biological sensing technology.

"The overall concept for the GAUSS program is that the airplane itself will be simply a conveyance, and we can mount on it whatever sensor/communication package is required," said Brinkmann.

The radar package that GTRI is currently installing and testing is complex, he explained. In addition to phased-array scanning capability, the radar operates in the X-band, is capable of five acquisition modes and can be programmed to transmit arbitrary waveforms.

"This radar is a very flexible system that will be able to do ground mapping, as well as detecting and tracking objects moving around on the ground," Brinkmann said. "These multiple sensing capabilities offer many possibilities for defense operations, along with search-and-rescue and disaster-recovery operations."

Possible applications include using the signals intelligence package to locate people buried in rubble by searching for cell phone signals, he said. In another scenario, a group of self-guided UAVs could be used to create an ad hoc cell phone network. That application could be potentially valuable in a post-disaster scenario where existing cell phone towers have been disabled, as happened after Hurricane Katrina, the Haiti earthquake and other events.

"The GAUSS platform is extremely helpful for proof-of-principle development and testing new concepts for airborne sensors," Brinkmann said. "It gives GTRI a convenient and flexible base from which to pursue significant research in a variety of disciplines."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology, Research Communications. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology, Research Communications. "Small UAV supports development of lightweight sensors." ScienceDaily. ScienceDaily, 15 January 2013. <www.sciencedaily.com/releases/2013/01/130115143724.htm>.
Georgia Institute of Technology, Research Communications. (2013, January 15). Small UAV supports development of lightweight sensors. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/01/130115143724.htm
Georgia Institute of Technology, Research Communications. "Small UAV supports development of lightweight sensors." ScienceDaily. www.sciencedaily.com/releases/2013/01/130115143724.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins