Featured Research

from universities, journals, and other organizations

Chemical reactions: How some non-metal compounds mimic the behavior of their metal-based counterparts

Date:
January 23, 2013
Source:
Academy of Finland
Summary:
Researchers have revealed how some non-metal compounds mimic the behavior of their metal-based counterparts in chemical reactions.

The activation of molecular hydrogen with non-metal boroles (left). The molecular structure of a pentaaryl borole (middle). The theoretically calculated reaction profile for the activation reaction, showing the generation of both cis and trans products (right).
Credit: Image courtesy of Suomen Akatemia (Academy of Finland)

The research team led by Academy Research Fellow Heikki M. Tuononen has been able to identify the mechanism which enables some non-metal compounds to mimic the reactivity of their metal-based counterparts.

The research was conducted in collaboration with the research group of Dr. Warren Piers at the University of Calgary and the results have recently been published in the Journal of the American Chemical Society.

"These results could be dubbed a kind of "modern alchemy" in which chemical compounds are made to react in a way totally atypical to them. In alchemy, one of the main goals was to turn the less noble base metals into the more noble ones such as gold," says Dr. Tuononen.

The addition of molecular hydrogen to chemical compounds is one of the most widely used chemical reactions at the industrial scale, being particularly important for oil refinement and fertilizer industry. This reaction typically uses a metal-based catalyst to increase the reaction rate, as otherwise the breakup of the chemical bond in the hydrogen molecule (called activation) would require significant amount of energy. Since the catalysts used in the process are in general expensive (some are also toxic), there has been an ongoing effort to find cheaper and safer hydrogen-activation routes based on non-metal compounds.

"There are only a handful of non-metal compounds known which are able to activate molecular hydrogen in ambient conditions. So the boroles reported in 2010 by Dr. Piers were certainly a welcomed addition to the group! However, at that time, the mechanism of their metal-like reactivity could not be explained," tells Dr. Tuononen.

The research group of Dr. Tuononen specializes in theoretical modelling of chemical reactions at the molecular level. Concurrently with their computational studies, the group of Dr. Piers was conducting research on the unknown reaction mechanism using experimental techniques. At the end, the results from both investigations were combined, allowing for a detailed picture of the mechanism to be formed.

"The computational results were able to explain why these specific boroles react with molecular hydrogen in a seemingly similar manner to the traditional metal-based compounds even though they contain no metal atoms," describes postdoctoral researcher Virve Karttunen who is a member of Dr. Tuononen's research group. It was really spectacular that we were able to predict all the intermediates on the reaction pathway, one of which was also proven experimentally by the group of Dr. Piers.

The theoretical results obtained by Dr. Tuononen's research group show clearly that the reactivity observed for the boroles can be explained with their unique electronic structure. Although the investigated compounds will not function as new catalysts, the results fully support the idea that metal-like reactivity is possible for non-metal compounds and that we have just barely scratched the surface of this research area.

At the moment, researchers in my group are applying the theoretical data we have obtained thus far to design new non-metal compounds suitable for hydrogen activation. The collaboration with the group of Dr. Piers is also continuing active," tells Dr. Tuononen.

The project was funded by the Academy of Finland and the Technology Industries of Finland Centennial Foundation.


Story Source:

The above story is based on materials provided by Academy of Finland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adrian Y. Houghton, Virve A. Karttunen, Cheng Fan, Warren E. Piers, Heikki M. Tuononen. Mechanistic Studies on the Metal-Free Activation of Dihydrogen by Antiaromatic Pentarylboroles. Journal of the American Chemical Society, 2013; 135 (2): 941 DOI: 10.1021/ja311842r

Cite This Page:

Academy of Finland. "Chemical reactions: How some non-metal compounds mimic the behavior of their metal-based counterparts." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123094305.htm>.
Academy of Finland. (2013, January 23). Chemical reactions: How some non-metal compounds mimic the behavior of their metal-based counterparts. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/01/130123094305.htm
Academy of Finland. "Chemical reactions: How some non-metal compounds mimic the behavior of their metal-based counterparts." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123094305.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins