Featured Research

from universities, journals, and other organizations

Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

Date:
January 24, 2013
Source:
Public Library of Science
Summary:
Researchers have shown how adhesion of Neisseria meningitidis to human microvessels in a humanized mouse model leads to the characteristic cutaneous lesions of meningococcal sepsis. This work is an important demonstration of the direct role of adhesion, specifically Type IV pili mediated adhesion, plays in the development of the disease.

Researchers at the Paris Cardiovascular Research Center (PARCC) have shown how adhesion of Neisseria (N.) meningitidis to human microvessels in a humanized mouse model leads to the characteristic cutaneous lesions of meningococcal sepsis. This work, published on January 24 in the Open Access journal PLOS Pathogens, is an important demonstration of the direct role of adhesion, specifically Type IV pili mediated adhesion, plays in the development of the disease.

Related Articles


Meningococcal sepsis is a rapidly developing and often fatal infection. Cutaneous lesions, often presenting clinically as purpuric or petechial skin rashes, are a hallmark feature of the infection hence the term purpura fulminans to describe this severe form of sepsis. Understanding the mechanisms behind the development of these lesions is important to understand disease progression because it reveals the underlying mechanisms of the pathological process. From the experimental point of view the strict human specificity of N. meningitidis has long been a limiting factor in the development of relevant in vivo models of this infection and for understanding how the bacteria interact with the blood vessels. It was previously thought that that the large number of circulating bacteria was responsible for the vascular damage through the release of LPS in particular.

In this research, investigators utilized a humanized mouse model, where human skin, containing an abundance of human microvessels, was grafted onto immunocompromised mice. Grafted mice thus had a hybrid vasculature, part mouse, and part human. In this context, N. meningitidis associated exclusively, and in significant numbers, with the human vessels. Once associated with the human vessels the bacteria rapidly led to an endothelial inflammatory response with expression of the human pro-inflammatory cytokines IL-6 and IL-8 and the infiltration of inflammatory cells. Vascular events such as clotting, thrombosis, congestion and vascular leak were all observed in the infected human vessels, mimicking the clinical pathology. The combination of these factors led to the development of a purpuric rash in 30% of the infections. The association of the bacteria with the human vessels was shown to be dependent on the adhesive properties of the bacterial Type IV pili, filamentous structures found at the surface of many pathogenic bacteria. Importantly, bacterial mutants deficient for these adhesive structures do not lead to any distinctive pathology despite normal numbers of circulating bacteria.

This work thus leads to a change in the paradigm in our understanding of the disease mechanism, with local adhesion events now considered central to the disease process. Because it recapitulates key features of human infection, the described experimental model opens new avenues of research to further understand the mechanisms of disease and to design new prevention and treatment strategies.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keira Melican, Paula Michea Veloso, Tiffany Martin, Patrick Bruneval, Guillaume Duménil. Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model. PLoS Pathogens, 2013; 9 (1): e1003139 DOI: 10.1371/journal.ppat.1003139

Cite This Page:

Public Library of Science. "Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis." ScienceDaily. ScienceDaily, 24 January 2013. <www.sciencedaily.com/releases/2013/01/130124183634.htm>.
Public Library of Science. (2013, January 24). Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/01/130124183634.htm
Public Library of Science. "Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis." ScienceDaily. www.sciencedaily.com/releases/2013/01/130124183634.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins