Featured Research

from universities, journals, and other organizations

Engineers solve a biological mystery and boost artificial intelligence

Date:
January 30, 2013
Source:
Cornell University
Summary:
By simulating 25,000 generations of evolution within computers, engineering and robotics researchers have discovered why biological networks tend to be organized as modules -- a finding that will lead to a deeper understanding of the evolution of complexity. The new insight also will help evolve artificial intelligence, so robot brains can acquire the grace and cunning of animals.

Conceptual illustration of a computer chip functioning as a brain.
Credit: © Nikolai Sorokin / Fotolia

By simulating 25,000 generations of evolution within computers, Cornell University engineering and robotics researchers have discovered why biological networks tend to be organized as modules -- a finding that will lead to a deeper understanding of the evolution of complexity.

The new insight also will help evolve artificial intelligence, so robot brains can acquire the grace and cunning of animals.

From brains to gene regulatory networks, many biological entities are organized into modules -- dense clusters of interconnected parts within a complex network. For decades biologists have wanted to know why humans, bacteria and other organisms evolved in a modular fashion. Like engineers, nature builds things modularly by building and combining distinct parts, but that does not explain how such modularity evolved in the first place. Renowned biologists Richard Dawkins, Gόnter P. Wagner, and the late Stephen Jay Gould identified the question of modularity as central to the debate over "the evolution of complexity."

For years, the prevailing assumption was simply that modules evolved because entities that were modular could respond to change more quickly, and therefore had an adaptive advantage over their non-modular competitors. But that may not be enough to explain the origin of the phenomena.

The team discovered that evolution produces modules not because they produce more adaptable designs, but because modular designs have fewer and shorter network connections, which are costly to build and maintain. As it turned out, it was enough to include a "cost of wiring" to make evolution favor modular architectures.

This theory is detailed in "The Evolutionary Origins of Modularity," published January 29 in the Proceedings of the Royal Society by Hod Lipson, Cornell associate professor of mechanical and aerospace engineering; Jean-Baptiste Mouret, a robotics and computer science professor at Universitι Pierre et Marie Curie in Paris; and by Jeff Clune, a former visiting scientist at Cornell and currently an assistant professor of computer science at the University of Wyoming.

To test the theory, the researchers simulated the evolution of networks with and without a cost for network connections.

"Once you add a cost for network connections, modules immediately appear. Without a cost, modules never form. The effect is quite dramatic," says Clune.

The results may help explain the near-universal presence of modularity in biological networks as diverse as neural networks -- such as animal brains -- and vascular networks, gene regulatory networks, protein-protein interaction networks, metabolic networks and even human-constructed networks such as the Internet.

"Being able to evolve modularity will let us create more complex, sophisticated computational brains," says Clune.

Says Lipson: "We've had various attempts to try to crack the modularity question in lots of different ways. This one by far is the simplest and most elegant."

The National Science Foundation and the French National Research Agency funded this research.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Clune, J.-B. Mouret, H. Lipson. The evolutionary origins of modularity. Proceedings of the Royal Society B: Biological Sciences, 2013; 280 (1755): 20122863 DOI: 10.1098/rspb.2012.2863

Cite This Page:

Cornell University. "Engineers solve a biological mystery and boost artificial intelligence." ScienceDaily. ScienceDaily, 30 January 2013. <www.sciencedaily.com/releases/2013/01/130130082300.htm>.
Cornell University. (2013, January 30). Engineers solve a biological mystery and boost artificial intelligence. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/01/130130082300.htm
Cornell University. "Engineers solve a biological mystery and boost artificial intelligence." ScienceDaily. www.sciencedaily.com/releases/2013/01/130130082300.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) — The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) — Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) — Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins