Featured Research

from universities, journals, and other organizations

Target 'super-spreaders' to stop hepatitis C

Date:
February 1, 2013
Source:
University of Oxford
Summary:
Each intravenous drug user contracting hepatitis C is likely to infect around 20 other people with the virus, half of these transmissions occurring in the first two years after the user is first infected, a new study estimates.

Each intravenous drug user contracting Hepatitis C is likely to infect around 20 other people with the virus, half of these transmissions occurring in the first two years after the user is first infected, a new study estimates.

The work, led by researchers from Oxford University, suggests that early diagnosis and treatment of Hepatitis C in intravenous drug users could prevent many transmissions by limiting the impact of these 'super-spreaders' (a highly infectious person who spreads a disease to many other people).

Working out 'who has infected who' in fast-spreading diseases such as influenza is often relatively straightforward, but in slow-spreading diseases such as Hepatitis C and HIV, where instances of transmission are spread over months or years, it is extremely difficult. The new approach, developed by a team from Oxford University, University of Athens and Imperial College, combines epidemiological surveillance and molecular data to describe in detail, for the first time, how Hepatitis C spreads in a population.

A report of the research appears in this week's PLoS Computational Biology.

'For the first time we show that super-spreading in Hepatitis C is led by intravenous drug users early in their infection,' said Dr Gkikas Magiorkinis of Oxford University's Department of Zoology, lead author of the study. 'Using this information we can hopefully soon make a solid argument to support the scaling-up of early diagnosis and antiviral treatment in drug users. Helping these people and stopping the spread of Hepatitis C is our ultimate target.'

The World Health Organisation has identified Hepatitis C as a major public health problem: up to 180 million people worldwide live with the virus, most are unaware that they have been infected and remain undiagnosed for more than 10 years. 20% of those infected will develop cancer or liver scarring (cirrhosis) after 20 years of infection, at which point the only treatment is liver transplantation, which costs around 100,000 ($160,000) for each patient.

Unlike other forms of Hepatitis there is currently no vaccine available for Hepatitis C, although there are effective treatments. The virus mainly transmits through contaminated blood and before 1990 the major transmission route was blood transfusions and blood products. Since screening for blood transfusions was introduced, after the discovery of the virus in 1989, the only significant transmission route for Hepatitis C is now intravenous drug use -- users are at risk through the sharing and re-use of syringes.

'Working out how many people are likely to be infected by each 'super-spreader' of Hepatitis C, as well as how soon they will be infected, has been a puzzle for over 20 years,' said Dr Magiorkinis. 'Our research has resolved this issue and paves the way for a modelling study to show what kind of public health interventions could really make a difference. Our approach should also be very useful to those studying HIV.'

The research draws on data from four Hepatitis C epidemics in Greece, using information on 943 patients in treatment studies between 1995 and 2000, and around 100 genetic sequences representative of the epidemic taken from frozen plasma samples collected between 1996 and 2006. The team then used a mathematical model to estimate the variance of secondary infection and how long it takes for such infection to occur.


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gkikas Magiorkinis, Vana Sypsa, Emmanouil Magiorkinis, Dimitrios Paraskevis, Antigoni Katsoulidou, Robert Belshaw, Christophe Fraser, Oliver George Pybus, Angelos Hatzakis. Integrating Phylodynamics and Epidemiology to Estimate Transmission Diversity in Viral Epidemics. PLoS Computational Biology, 2013; 9 (1): e1002876 DOI: 10.1371/journal.pcbi.1002876

Cite This Page:

University of Oxford. "Target 'super-spreaders' to stop hepatitis C." ScienceDaily. ScienceDaily, 1 February 2013. <www.sciencedaily.com/releases/2013/02/130201090822.htm>.
University of Oxford. (2013, February 1). Target 'super-spreaders' to stop hepatitis C. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/02/130201090822.htm
University of Oxford. "Target 'super-spreaders' to stop hepatitis C." ScienceDaily. www.sciencedaily.com/releases/2013/02/130201090822.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins