Featured Research

from universities, journals, and other organizations

3-D printing breakthrough with human embryonic stem cells

Date:
February 4, 2013
Source:
Institute of Physics
Summary:
A team of researchers from Scotland has used a novel 3-D printing technique to arrange human embryonic stem cells for the very first time. Scientists hope that this breakthrough will allow three-dimensional tissues and structures to be created using hESCs, which could, amongst other things, speed up and improve the process of drug testing.

Researchers have used a novel 3-D printing technique to arrange human embryonic stem cells for the very first time. Scientists hope that this breakthrough will allow three-dimensional tissues and structures to be created using hESCs. (Stock image)
Credit: © Alexander Raths / Fotolia

A team of researchers from Scotland has used a novel 3D printing technique to arrange human embryonic stem cells (hESCs) for the very first time.

Related Articles


It is hoped that this breakthrough, which has been published Feb. 5 in the journal Biofabrication, will allow three-dimensional tissues and structures to be created using hESCs, which could, amongst other things, speed up and improve the process of drug testing.

In the field of biofabrication, great advances have been made in recent years towards fabricating three-dimensional tissues and organs by combining artificial solid structures and cells; however, in the majority of these studies, animal cells have been used to test the different printing methods which are used to produce the structures.

Co-author of the study, Dr Will Wenmiao Shu, from Heriot-Watt University, said: "To the best of our knowledge, this is the first time that hESCs have been printed. The generation of 3D structures from hESCs will allow us to create more accurate human tissue models which are essential for in vitro drug development and toxicity-testing. Since the majority of drug discovery is targeting human disease, it makes sense to use human tissues."

In the longer term, this new method of printing may also pave the way for incorporating hESCs into artificially created organs and tissues ready for transplantation into patients suffering from a variety of diseases.

In the study, the researchers, from Heriot-Watt University in collaboration with Roslin Cellab, a stem cell technology company, used a valve-based printing technique, which was tailored to account for the sensitive and delicate properties of hESCs.

The hESCs were loaded into two separate reservoirs in the printer and were then deposited onto a plate in a pre-programmed, uniformed pattern.

Once the hESCs were printed, a number of tests were performed to discern how effective the method was. For example, the researchers tested to see if the hESCs remained alive after printing and whether they maintained their ability to differentiate into different types of cells. They also examined the concentration, characterisation and distribution of the printed hESCs to assess the accuracy of the valve-based method.

Dr Shu said: "Using this valve-based method, the printed cells are driven by pneumatic pressure and controlled by the opening and closing of a microvalve. The amount of cells dispensed can be precisely controlled by changing the nozzle diameter, the inlet air pressure or the opening time of the valve.

"We found that the valve-based printing is gentle enough to maintain high stem cell viability, accurate enough to produce spheroids of uniform size, and, most importantly, the printed hESCs maintained their pluripotency -- the ability to be differentiated into any other cell type."

Roslin Cellab has a track record of applying new technologies to human stem cell systems and will take the lead in developing 3D stem cell printing for commercial uses.

Jason King, business development manager of Roslin Cellab, said: "This world-first printing of human embryonic stem cell cultures is a continuation of our productive partnership with Heriot-Watt. Normally laboratory grown cells grow in 2D but some cell types have been printed in 3D. However, up to now, human stem cell cultures have been too sensitive to manipulate in this way.

"This is a scientific development which we hope and believe will have immensely valuable long-term implications for reliable, animal-free drug-testing and, in the longer term, to provide organs for transplant on demand, without the need for donation and without the problems of immune suppression and potential organ rejection."

hESCs have received much attention in the field of regenerative medicine. They are originally derived from an early stage embryo to create "stem cell lines" which can be grown indefinitely and differentiate into any cell type in the human body.

"In the longer term, we envisage the technology being further developed to create viable 3D organs for medical implantation from a patient's own cells, eliminating the need for organ donation, immune suppression and the problem of transplant rejection," continued Dr Shu.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alan Faulkner-Jones, Sebastian Greenhough, Jason A King, John Gardner, Aidan Courtney, Wenmiao Shu. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication, 2013; 5 (1): 015013 DOI: 10.1088/1758-5082/5/1/015013

Cite This Page:

Institute of Physics. "3-D printing breakthrough with human embryonic stem cells." ScienceDaily. ScienceDaily, 4 February 2013. <www.sciencedaily.com/releases/2013/02/130204220838.htm>.
Institute of Physics. (2013, February 4). 3-D printing breakthrough with human embryonic stem cells. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2013/02/130204220838.htm
Institute of Physics. "3-D printing breakthrough with human embryonic stem cells." ScienceDaily. www.sciencedaily.com/releases/2013/02/130204220838.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins