Featured Research

from universities, journals, and other organizations

Using single quantum dots to probe nanowires

Date:
February 5, 2013
Source:
Joint Quantum Institute
Summary:
Plasmonic antennas will help image and detect bio-particles. This new research helps establish this approach.

(a) This is an optical image of the microfluidic crossed-channel device. Flow in the center control region (dashed circle) is manipulated in two dimensions by 4 external electrodes (not shown). Scale bar is 500 μm. (b) This is a schematic of the positioning and imaging technique. A single QD is driven along a trajectory close to the wire by flow control. The inset shows a microcope image of a typical nanowire with 1 μm scale bar.
Credit: JQI

Modern telecommunications happens because of fast electrons and fast photons. Can it get better? Can Moore's law -- the doubling of computing power ever 18 months or so -- be sustained? Can the compactness (nm-scale components) of electronics be combined with the speed of photonics? Well, one such hybrid approach is being explored at the Joint Quantum Institute, where scientists bring together three marvelous physics research fields: microfluidics, quantum dots, and plasmonics to probe and study optical nanostructures with spatial accuracy as fine as 12 nm.

Plasmonics

When light strikes a strip of metal an electron wave can be excited in the surface. Is this "surface plasmon" a bit of light or electricity. Well, it's a bit of both. The wavelength of this electromagnetic wave is shorter and the energy density higher than that of the incoming laser light; the plasmon is thus tightly localized light constrained to propagate along the meal surface. The science of "plasmonics" has arisen to capitalize on various imaging, sensing, and processing abilities inherent in plasmons. To start with, though, one needs to know exactly what happens at that laser-excited metallic surface. That light is converted into the plasmonic wave; later the energy can be reconverted into light.

Here's where the JQI experiment comes in. The main result of the work, published February 5 in the journal Nature Communications, is to provide a map showing how the metal strip, in this case a silver wire 4 microns long and 100 nm wide, lights up.

Microfluidics and Quantum Dots

The other two chief components of the experiment, in addition to plasmonics, are microfluidics and quantum dots. Microfluidics, a relatively new science all by itself, features the movement of nanoliter volumes of fluids through channels defined on microchips, analogous to the conducting paths strung across microprocessors for carrying electrical currents. Quantum dots, nanometer-sized semiconductor balls, are tailored to possess a specified set of allowed energy states; in effect the dots are artificial atoms that can be moved around. In the JQI experiment the 10-nm-wide dots (the important cadmium-selenide layer is only 3 nm thick) float in a fluid whose flow can be controlled by varying an applied voltage. The dots are drawn up close to the nanowire as if they were mines next to a submarine.

Indeed the dot is there precisely to excite the wire. The dot is fluorescence machine -- in a loose sense a nanoscopic lightbulb. Striking it with green laser light, it quickly re-emits red light (one photon at a time), and it is this radiation which excites waves in the nearby wire, which acts like an antenna. But the interaction is a two-way street; the dot's emissions will vary depending on where along the length of the wire it is; the end of the wire (like any pointy lightning rod on a barn) is where electrical fields are highest and this attracts the most emission from the dot.

A CCD camera captures light coming from the dots and from the wire. The camera qualities, the optical properties of the dot, the careful positioning of the dot, and the shape and purity of the nanowire combine to provide an image of the electric field intensity of the nanowire with 12-nm accuracy. The intensity map shows that the input red light from the quantum dot (wavelength of 620 nm) has effectively been transformed into a plasmonic wavelength of 320 nm.

Chad Ropp is a graduate student working on the project and the lead author on the paper. "Plasmonic maps have been resolved before, but the quantum mechanical interactions with a single emitter have not, and not with this degree of accuracy," said Ropp.

Possible Applications

In an actual device, the quantum dot could be replaced by a bio-particle which could be identified through the nanowire's observed effect on particle's emissions. Or the dot-wire duo could be combined in various configurations as plasmonic equivalents of electronic circuit components. Other uses for this kind of nanowire setup might exploit the high energy density in the plasmonic state to support nonlinear effects. This could enable the nanowire-dot combination to operate as an optical transistor.


Story Source:

The above story is based on materials provided by Joint Quantum Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chad Ropp, Zachary Cummins, Sanghee Nah, John T. Fourkas, Benjamin Shapiro, Edo Waks. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nature Communications, 2013; 4: 1447 DOI: 10.1038/ncomms2477

Cite This Page:

Joint Quantum Institute. "Using single quantum dots to probe nanowires." ScienceDaily. ScienceDaily, 5 February 2013. <www.sciencedaily.com/releases/2013/02/130205123652.htm>.
Joint Quantum Institute. (2013, February 5). Using single quantum dots to probe nanowires. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/02/130205123652.htm
Joint Quantum Institute. "Using single quantum dots to probe nanowires." ScienceDaily. www.sciencedaily.com/releases/2013/02/130205123652.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins