Featured Research

from universities, journals, and other organizations

Gold squeezed into micro-Velcro

Date:
February 7, 2013
Source:
National Institute for Materials Science
Summary:
Researchers have used self-assembling techniques to produce gold microwires that have suitable properties for micro-Velcro.

SEM micrographs showing a variety of Au microwire morphologies depending on the overall Au content: a) Short and straight wires appear at 42 at.% Au. b) With increasing Au content to 44 at.% the wires become longer and start bending. c) They achieve a maximum length and a hook-like shape at 48 at.% Au. d) False-color picture generated from elemental composition maps for 46 at.% Au (Au: yellow, W: blue).
Credit: Image courtesy of National Institute for Materials Science

Researchers at Ruhr University have used self-assembling techniques to produce gold microwires that have suitable properties for micro-Velcro.

The research is published today in Science and Technology of Advanced Materials.

Velcro consists of one surface with loops, and another with hooks that latch onto the loops, joining opposing surfaces strongly. A miniaturised version of Velcro could be used in micro- and nanotechnology, but to form the surfaces, microwires are needed with properties that provide strength and durability.

Several different approaches have been used to construct 'micro-Velcro', but the most promising are those that use self-assembling or self-organising techniques, where microwires are 'squeezed' from a composite material by compression. Researchers at Ruhr University Bochum, Germany, have used this technique to produce gold microwires that have suitable properties for micro-Velcro.

The scientists created thin films of composite materials containing gold and tungsten metal. These were then heated to very high temperatures, causing the tungsten to react with oxygen and form tungsten oxide. This increased the volume of the tungsten and caused compression within the composite, 'squeezing' the softer gold out as 'whiskers'.

Different ratios of gold to tungsten were tried in the original composite, and these were heated to different temperatures and for different times to find the optimal conditions. The best result produced gold microwires approximately 35 micrometres long -- similar to the width of a human hair -- and 2 micrometres in diameter.

The resulting gold microwires have larger diameters than indium metal microwires that had previously been made using a similar technique, making them more suitable for micro Velcro. The results demonstrate that this new approach is a feasible one for producing the microwires that could be used to make micro-Velcro.

This research was published in the journal, Science and Technology of Advanced Materials.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sven Hamann, Hayo Brunken, Steffen Salomon, Robert Meyer, Alan Savan, Alfred Ludwig. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads. Science and Technology of Advanced Materials, 2013; 14 (1): 015003 DOI: 10.1088/1468-6996/14/1/015003

Cite This Page:

National Institute for Materials Science. "Gold squeezed into micro-Velcro." ScienceDaily. ScienceDaily, 7 February 2013. <www.sciencedaily.com/releases/2013/02/130207141158.htm>.
National Institute for Materials Science. (2013, February 7). Gold squeezed into micro-Velcro. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/02/130207141158.htm
National Institute for Materials Science. "Gold squeezed into micro-Velcro." ScienceDaily. www.sciencedaily.com/releases/2013/02/130207141158.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins