Featured Research

from universities, journals, and other organizations

'Achilles' heel' for lymphoid leukemia identified

Date:
February 11, 2013
Source:
Institut de recherches cliniques de Montreal
Summary:
Scientists have found a possible alternative treatment for lymphoid leukemia. They discovered a molecule that represents the disease's "Achilles' heel" and could be targeted to develop a new approach that would reduce the adverse effects of current treatments such as chemotherapy and radiation therapy.

An international research team coordinated at the IRCM in Montréal found a possible alternative treatment for lymphoid leukemia. Led by Dr. Tarik Möröy, the IRCM's President and Scientific Director, the team discovered a molecule that represents the disease's "Achilles' heel" and could be targeted to develop a new approach that would reduce the adverse effects of current treatments such as chemotherapy and radiation therapy. The study's results are being published February 11 in the scientific journal Cancer Cell.

The researchers' results have direct implications for the treatment of acute lymphoblastic leukemia (ALL), one of the four most common types of leukemia. ALL is a cancer of the bone marrow and blood that progresses rapidly without treatment. Current treatments consist of chemotherapy and radiation therapy, which are both highly toxic and non-specific, meaning that they damage healthy cells as well as tumour tissues.

"Even when effective, patients can suffer dramatic side effects from these treatments," says Dr. Möröy, who is also Director of the Hematopoiesis and Cancer research unit at the IRCM and corresponding author of the study. "Therefore, they would directly benefit from an improved therapy that could reduce the necessary dose of radiation or chemotherapy, and thus their side effects, while maintaining the treatments' efficacy. Therapies that target specific molecules have shown great promise. This is why, for the past 20 years, I have been studying a molecule called Gfi1, which plays an important role in the development of blood cells and cancer."

When normal cells are transformed into tumour cells, the body responds by activating a tumour suppressor protein that induces cell death. Tumour cells must therefore counteract cell death in order to survive.

"With this study, we found that leukemic cells depend on the Gfi1 molecule for their survival," explains Dr. Cyrus Khandanpour, co-first author of the study and University Hospital physician at University Duisburg-Essen in Germany. "In fact, this molecule helps the malignant cells avoid death by hindering the activity of the tumour suppressor protein. Our results show that when Gfi1 is removed in mice that suffer from T-cell leukemia, the tumour disappears and the animals survive."

"Following this discovery, we wanted to test whether it could be used as a viable approach to treat leukemia in humans," adds Dr. Möröy. "We transplanted cells from a patient with T-cell leukemia into a mouse. We then inhibited the Gfi1 molecule using a commercially-available agent, and noticed that it stopped the expansion of human leukemia in the bone marrow, peripheral blood and spleen, without leading to adverse effects."

"These results are a significant indication that therapies targeting the molecule Gfi1 would work in human patients," says Dr. H. Leighton Grimes, co-corresponding author of the study from the Cincinnati Children's Hospital Medical Center. "In fact, if our results translate to patients, they could improve the prognosis of people suffering from lymphoid malignancies," adds Dr. James Phelan, the study's co-first author and recent PhD graduate in Dr. Grimes' laboratory.

"Our study suggests that a molecular-based therapy targeting Gfi1 would not only significantly improve response rates, but may also lower effective doses of chemotherapy agents or radiation, thereby reducing harmful side effects," concludes Dr. Khandanpour, who is also a visiting scientist at the IRCM. "Gfi1 represents an Achilles' heel for lymphoid leukemia and we are continuing to work so that our approach may soon move to clinical trials."

About acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is one of the four most common types of leukemia and affects blood cells and the immune system. The disease develops when immature white blood cells are overproduced in the bone marrow, crowd out normal cells, and eventually spread to other organs. Acute refers to the relatively short time course of the disease, as it can be fatal in as little as a few weeks if untreated.

According to the Leukemia & Lymphoma Society of Canada, ALL is the most common type of cancer in children from one to seven years old, and the most common type of leukemia in children from infancy up to age 19. Four out of five children with ALL are cured of their disease after treatment. The number of adults and their remission lengths have grown significantly over the past 30 years. An estimated 4,800 people in Canada were expected to develop leukemia in 2010.


Story Source:

The above story is based on materials provided by Institut de recherches cliniques de Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cyrus Khandanpour, James D. Phelan, Lothar Vassen, Judith Schütte, Riyan Chen, Shane R. Horman, Marie-Claude Gaudreau, Joseph Krongold, Jinfang Zhu, William E. Paul, Ulrich Dührsen, Bertie Göttgens, H. Leighton Grimes, Tarik Möröy. Growth Factor Independence 1 Antagonizes a p53-Induced DNA Damage Response Pathway in Lymphoblastic Leukemia. Cancer Cell, 2013; 23 (2): 200 DOI: 10.1016/j.ccr.2013.01.011

Cite This Page:

Institut de recherches cliniques de Montreal. "'Achilles' heel' for lymphoid leukemia identified." ScienceDaily. ScienceDaily, 11 February 2013. <www.sciencedaily.com/releases/2013/02/130211135011.htm>.
Institut de recherches cliniques de Montreal. (2013, February 11). 'Achilles' heel' for lymphoid leukemia identified. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/02/130211135011.htm
Institut de recherches cliniques de Montreal. "'Achilles' heel' for lymphoid leukemia identified." ScienceDaily. www.sciencedaily.com/releases/2013/02/130211135011.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins