Featured Research

from universities, journals, and other organizations

Synaptic molecule works differently than thought; may mean new targets for Alzheimer's

Date:
February 19, 2013
Source:
University of California, San Diego Health Sciences
Summary:
Researchers have upended a long-held view about the basic functioning of a key receptor molecule involved in signaling between neurons, and describe how a compound linked to Alzheimer’s disease impacts that receptor and weakens synaptic connections between brain cells.

In a pair of new papers, researchers at the University of California, San Diego School of Medicine and the Royal Netherlands Academy of Arts and Sciences upend a long-held view about the basic functioning of a key receptor molecule involved in signaling between neurons, and describe how a compound linked to Alzheimer's disease impacts that receptor and weakens synaptic connections between brain cells.

Related Articles


The findings are published in the Feb. 18 early edition of the Proceedings of the National Academy of Sciences.

Long the object of study, the NMDA receptor is located at neuronal synapses -- the multitudinous junctions where brain cells trade electrical and chemical messages. In particular, NMDA receptors are ion channels activated by glutamate, a major "excitatory" neurotransmitter associated with cognition, learning and memory.

"NMDA receptors are well known to allow the passage of calcium ions into cells and thereby trigger biochemical signaling," said principal investigator Roberto Malinow, MD, PhD professor of neurosciences at UC San Diego School of Medicine.

The new research, however, indicates that NMDA receptors can also operate independent of calcium ions. "It turns upside down a view held for decades regarding how NMDA receptors function," said Malinow, who holds the Shiley-Marcos Endowed Chair in Alzheimer's Disease Research in Honor of Dr. Leon Thal (a renowned UC San Diego Alzheimer's disease researcher who died in a single-engine airplane crash in 2007).

Specifically, Malinow and colleagues found that glutamate binding to the NMDA receptor caused conformational changes in the receptor that ultimately resulted in a weakened synapse and impaired brain function.

They also found that beta amyloid -- a peptide that comprises the neuron-killing plaques associated with Alzheimer's disease -- causes the NMDA receptor to undergo conformational changes that also lead to the weakening of synapses.

"These new findings overturn commonly held views regarding synapses and potentially identify new targets in the treatment of Alzheimer's disease," said Malinow.

Co-authors on both papers are Helmut W. Kessels, Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, UCSD and Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences; and Sadegh Nabavi, Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, UC San Diego.

The research was funded in part by the National Institutes of Health (grants MH049159 and AG032132), the Shiley-Marcos Foundation, the Cure Alzheimer's Foundation, and the Internationale Stichting Alzheimer Onderzoek.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of California, San Diego Health Sciences. "Synaptic molecule works differently than thought; may mean new targets for Alzheimer's." ScienceDaily. ScienceDaily, 19 February 2013. <www.sciencedaily.com/releases/2013/02/130219140245.htm>.
University of California, San Diego Health Sciences. (2013, February 19). Synaptic molecule works differently than thought; may mean new targets for Alzheimer's. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/02/130219140245.htm
University of California, San Diego Health Sciences. "Synaptic molecule works differently than thought; may mean new targets for Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2013/02/130219140245.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins