Featured Research

from universities, journals, and other organizations

Creating next-generation materials able to operate in the toughest environments

Date:
February 22, 2013
Source:
University of Loughborough
Summary:
Scientists have launched a new research project to develop next-generation materials able to operate in the most extreme environments.

Testing ultra-high temperature ceramic composites at 2700⁰C.
Credit: Image courtesy of University of Loughborough

Loughborough University is leading a new 4.2 million research project to develop next-generation materials able to operate in the most extreme environments.

Related Articles


The conditions in which materials are required to function are becoming ever more challenging. Operating temperatures and pressures are increasing in all areas of manufacture, energy generation, transport and environmental clean-up. Often the high temperatures are combined with severe chemical environments and exposure to high energy and, in the nuclear industry, to ionising radiation.

The production and processing of next-generation materials capable of operating in these conditions will be a major challenge, especially at the scale required in many of these applications. In some cases, totally new compositions, processing and joining strategies will have to be developed.

Academics from Loughborough's Department of Materials will work with Imperial College London and Queen Mary University on the Engineering and Physical Sciences Research Council (EPSRC) funded project. Ultimately the research will allow new and revolutionary compositions, microstructures and composite systems to be designed, manufactured and tested.

Project leader Professor Jon Binner, Dean of the Loughborough School of Aeronautical, Automotive, Chemical and Materials Engineering, said: "This research is essential because of the increasingly demanding conditions in which materials have to operate across the whole spectrum of applications. It is vital that we develop the required understanding of how the processing, microstructures and properties of materials systems operating in extreme environments interact, to the point where materials with the required performance can actually be designed and then manufactured."

The research team has significant experience of working in materials development and engineering. Composites based on 'exotic' materials such as hafnium diboride are already being developed for use as leading edges for hypersonic vehicles by the three universities, as part of a Defence Science and Technology Laboratory (DSTL) funded project.


Story Source:

The above story is based on materials provided by University of Loughborough. Note: Materials may be edited for content and length.


Cite This Page:

University of Loughborough. "Creating next-generation materials able to operate in the toughest environments." ScienceDaily. ScienceDaily, 22 February 2013. <www.sciencedaily.com/releases/2013/02/130222083025.htm>.
University of Loughborough. (2013, February 22). Creating next-generation materials able to operate in the toughest environments. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2013/02/130222083025.htm
University of Loughborough. "Creating next-generation materials able to operate in the toughest environments." ScienceDaily. www.sciencedaily.com/releases/2013/02/130222083025.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Robot Replacements for Foxconn's Workers

Robot Replacements for Foxconn's Workers

Reuters - Business Video Online (Jan. 28, 2015) Foxconn parent Hon Hai Precision Industry is looking to automation to keep productivity up without the rising costs of human labor. Meg Teckman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins