Featured Research

from universities, journals, and other organizations

Newly observed properties of vacuums: Light particles illuminate the vacuum

Date:
February 26, 2013
Source:
Aalto University
Summary:
Researchers have succeeded in showing experimentally that vacuums have properties not previously observed. According to the laws of quantum mechanics, it is a state with abundant potentials. Vacuums contain momentarily appearing and disappearing virtual pairs, which can be converted into detectable light particles.

Artist's impression of the creation of entangled photon pair, a process which is seeded by the vacuum fluctuations. The source of the pair is an actual microscope image of the chain of Superconducting Quantum Interference Devices of the metamaterial sample in which the dynamical Casimir effect was studied. The speed of light in this material could be varied by changing the magnetic field through the SQUID loops.
Credit: Image courtesy of Aalto University

In an article published in the Proceedings of the National Academy of Sciences, researchers from Aalto University and the VTT Technical Research Centre of Finland showed experimentally that vacuum has properties not previously observed. According to the laws of quantum mechanics, it is a state with abundant potentials. Vacuum contains momentarily appearing and disappearing virtual pairs, which can be converted into detectable light particles.

The researchers conducted a mirror experiment to show that by changing the position of the mirror in a vacuum, virtual particles can be transformed into real photons that can be experimentally observed. In a vacuum, there is energy and noise, the existence of which follows the uncertainty principle in quantum mechanics.

'If we act fast enough, we can prevent the particles from recombining -- they will then be transformed into real particles that can be detected', says Dr. Sorin Paraoanu from the Aalto University School of Science.

For the experiment, the researchers used an array of superconducting quantum-interference devices (SQUID). These parts resemble devices used in imaging small magnetic fields in the brain. By changing the magnetic field, the speed of light in the device can be changed. From the standpoint of the electromagnetic field of the vacuum, radiation reflecting from this kind of device experiences it as a moving mirror.

'By quickly varying the speed of light in the array, we can extract microwave photons out of the vacuum's quantum noise', explains doctoral student Pasi Lähteenmäki.

Future research directions for these kinds of devices include the creation of an artificial event horizon and observation or Hawking radiation emanating from it. The present observation will help cosmologists to get closer to the riddle of the birth of the universe and advance the development of extremely powerful quantum computers.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Lahteenmaki, G. S. Paraoanu, J. Hassel, P. J. Hakonen. Dynamical Casimir effect in a Josephson metamaterial. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1212705110

Cite This Page:

Aalto University. "Newly observed properties of vacuums: Light particles illuminate the vacuum." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226092128.htm>.
Aalto University. (2013, February 26). Newly observed properties of vacuums: Light particles illuminate the vacuum. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/02/130226092128.htm
Aalto University. "Newly observed properties of vacuums: Light particles illuminate the vacuum." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226092128.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins