Featured Research

from universities, journals, and other organizations

Blueprint for an artificial brain: Scientists experiment with memristors that imitate natural nerves

Date:
February 26, 2013
Source:
Universitaet Bielefeld
Summary:
Scientists have long been dreaming about building a computer that would work like a brain. This is because a brain is far more energy-saving than a computer, it can learn by itself, and it doesn't need any programming. Scientists are experimenting with memristors -- electronic microcomponents that imitate natural nerves.

A nanocomponent that is capable of learning: The Bielefeld memristor built into a chip here is 600 times thinner than a human hair.
Credit: Image courtesy of Universitaet Bielefeld

Scientists have long been dreaming about building a computer that would work like a brain. This is because a brain is far more energy-saving than a computer, it can learn by itself, and it doesn't need any programming. Privatdozent [senior lecturer] Dr. Andy Thomas from Bielefeld University's Faculty of Physics is experimenting with memristors -- electronic microcomponents that imitate natural nerves. Thomas and his colleagues have demonstrated that they could do this a year ago. They constructed a memristor that is capable of learning. Andy Thomas is now using his memristors as key components in a blueprint for an artificial brain.

He will be presenting his results at the beginning of March in the print edition of the Journal of Physics published by the Institute of Physics in London.

Memristors are made of fine nanolayers and can be used to connect electric circuits. For several years now, the memristor has been considered to be the electronic equivalent of the synapse. Synapses are, so to speak, the bridges across which nerve cells (neurons) contact each other. Their connections increase in strength the more often they are used. Usually, one nerve cell is connected to other nerve cells across thousands of synapses.

Like synapses, memristors learn from earlier impulses. In their case, these are electrical impulses that (as yet) do not come from nerve cells but from the electric circuits to which they are connected. The amount of current a memristor allows to pass depends on how strong the current was that flowed through it in the past and how long it was exposed to it.

Andy Thomas explains that because of their similarity to synapses, memristors are particularly suitable for building an artificial brain -- a new generation of computers. 'They allow us to construct extremely energy-efficient and robust processors that are able to learn by themselves.' Based on his own experiments and research findings from biology and physics, his article is the first to summarize which principles taken from nature need to be transferred to technological systems if such a neuromorphic (nerve like) computer is to function. Such principles are that memristors, just like synapses, have to 'note' earlier impulses, and that neurons react to an impulse only when it passes a certain threshold.

Thanks to these properties, synapses can be used to reconstruct the brain process responsible for learning, says Andy Thomas. He takes the classic psychological experiment with Pavlov's dog as an example. The experiment shows how you can link the natural reaction to a stimulus that elicits a reflex response with what is initially a neutral stimulus -- this is how learning takes place. If the dog sees food, it reacts by salivating. If the dog hears a bell ring every time it sees food, this neutral stimulus will become linked to the stimulus eliciting a reflex response. As a result, the dog will also salivate when it hears only the bell ringing and no food is in sight. The reason for this is that the nerve cells in the brain that transport the stimulus eliciting a reflex response have strong synaptic links with the nerve cells that trigger the reaction.

If the neutral bell-ringing stimulus is introduced at the same time as the food stimulus, the dog will learn. The control mechanism in the brain now assumes that the nerve cells transporting the neutral stimulus (bell ringing) are also responsible for the reaction -- the link between the actually 'neutral' nerve cell and the 'salivation' nerve cell also becomes stronger. This link can be trained by repeatedly bringing together the stimulus eliciting a reflex response and the neutral stimulus. 'You can also construct such a circuit with memristors -- this is a first step towards a neuromorphic processor,' says Andy Thomas.

'This is all possible because a memristor can store information more precisely than the bits on which previous computer processors have been based,' says Thomas. Both a memristor and a bit work with electrical impulses. However, a bit does not allow any fine adjustment -- it can only work with 'on' and 'off'. In contrast, a memristor can raise or lower its resistance continuously. 'This is how memristors deliver a basis for the gradual learning and forgetting of an artificial brain,' explains Thomas.


Story Source:

The above story is based on materials provided by Universitaet Bielefeld. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andy Thomas. Memristor-based neural networks. Journal of Physics D: Applied Physics, 2013; 46 (9): 093001 DOI: 10.1088/0022-3727/46/9/093001

Cite This Page:

Universitaet Bielefeld. "Blueprint for an artificial brain: Scientists experiment with memristors that imitate natural nerves." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226101400.htm>.
Universitaet Bielefeld. (2013, February 26). Blueprint for an artificial brain: Scientists experiment with memristors that imitate natural nerves. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/02/130226101400.htm
Universitaet Bielefeld. "Blueprint for an artificial brain: Scientists experiment with memristors that imitate natural nerves." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226101400.htm (accessed September 16, 2014).

Share This



More Mind & Brain News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
'Fat Shaming' Might Actually Cause Weight Gain

'Fat Shaming' Might Actually Cause Weight Gain

Newsy (Sep. 11, 2014) A study for University College London suggests obese people who are discriminated against gain more weight than those who are not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins