Featured Research

from universities, journals, and other organizations

Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows

Date:
February 28, 2013
Source:
University of Kentucky
Summary:
A groundbreaking new study has found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain — providing insight into potential therapeutic targets to treat the aggressive cancer. The study is unique in that his lab is the only one in the country to specifically study the metabolic process of triple-negative breast cancer cells.

Dr. Peter Zhou found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain.
Credit: University of Kentucky Public Relations

A groundbreaking new study led by the University of Kentucky Markey Cancer Center's Dr. Peter Zhou found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain -- providing insight into potential therapeutic targets to treat the aggressive cancer. Zhou's study is unique in that his lab is the only one in the country to specifically study the metabolic process of triple-negative breast cancer cells.

Related Articles


Normally, all cells -- including cancerous cells -- use glucose to initiate the process of making Adenosine-5'-triphosphate (ATP) for fuel to carry out essential functions. This process, called glycolysis, leads to other processes that use oxygen to make higher quantities of ATP -- but solid tumor cells, which have little access to oxygen, are forced to rely almost exclusively on aerobic glycolysis for survival.

Zhou's study, published in Cancer Cell, showed that the powerful transcription factor complex Snail-G9a-Dnmt1 is over-expressed in triple-negative breast cancer, inhibiting the enzyme 1,6-bisphosphate (FBP1). The loss of this enzyme shuts down the glucose anabolic pathway and promotes the glucose catabolic pathway, leading to a large amount of glucose entering the tumor cells and thus "feeding" the aggressive cancer. This metabolic switch empowers the triple-negative breast cancer cells to suck more glucose from the body, increasing macromolecule biosynthesis in tumor cells and maintaining ATP production despite a dearth of nutrients and an oxygen-free environment.

Triple-negative breast cancer is the most deadly subtype of breast cancer, and tends to occur in women at a younger age. This subtype of breast cancer has poor clinical outcomes due to the early metastasis of tumor cells, resistance to chemotherapy, and the lack of specific drugs that target it. Identifying this change in the cancer's metabolic process provides major insight into developing drugs to target the disease, Zhou says.

"These findings present significant insights regarding the development and progression of triple-negative breast cancer," said Zhou, associate professor of molecular and cellular biochemistry at UK. "They indicate that targeting the metabolic alteration will lead to an effective approach for treating this deadly disease."

Zhou's research was aided by the team in the Free Radical Biology in Cancer Shared Resource Facility (FRBC) of the Markey Cancer Center, directed by Dr. Allan Butterfield. The FRBC used an instrument called the Seahorse XF-96 Flux Analyzer to test and confirm the predictions of Zhou's findings in triple-negative breast cancer.

"The significance of this study rests in proving that triple negative breast cancer cells utilize glycolysis for survival and growth," Butterfield said. "The FRBC will assist Dr. Zhou in furthering this exciting research, potentially helping to identify key proteins in triple negative breast cancer cells that are expressed or modified differently than in control cells. Such knowledge may lead to new insights to potential approaches to treat this aggressive cancer."

Previously, Zhou has studied the role of the Snail complex in the cellular program known as the epithelial-mesenchymal transition (EMT), which is responsible for metastasis.

The study was also a collaboration with scientists at the University of Louisville (Dr. Teresa Fan) and at the University of Texas MD Anderson Cancer Center (Drs. Mien-Chie Hung and Jun Yao).


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Cite This Page:

University of Kentucky. "Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows." ScienceDaily. ScienceDaily, 28 February 2013. <www.sciencedaily.com/releases/2013/02/130228155519.htm>.
University of Kentucky. (2013, February 28). Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/02/130228155519.htm
University of Kentucky. "Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows." ScienceDaily. www.sciencedaily.com/releases/2013/02/130228155519.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins