Featured Research

from universities, journals, and other organizations

Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows

Date:
February 28, 2013
Source:
University of Kentucky
Summary:
A groundbreaking new study has found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain — providing insight into potential therapeutic targets to treat the aggressive cancer. The study is unique in that his lab is the only one in the country to specifically study the metabolic process of triple-negative breast cancer cells.

Dr. Peter Zhou found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain.
Credit: University of Kentucky Public Relations

A groundbreaking new study led by the University of Kentucky Markey Cancer Center's Dr. Peter Zhou found that triple-negative breast cancer cells are missing a key enzyme that other cancer cells contain -- providing insight into potential therapeutic targets to treat the aggressive cancer. Zhou's study is unique in that his lab is the only one in the country to specifically study the metabolic process of triple-negative breast cancer cells.

Related Articles


Normally, all cells -- including cancerous cells -- use glucose to initiate the process of making Adenosine-5'-triphosphate (ATP) for fuel to carry out essential functions. This process, called glycolysis, leads to other processes that use oxygen to make higher quantities of ATP -- but solid tumor cells, which have little access to oxygen, are forced to rely almost exclusively on aerobic glycolysis for survival.

Zhou's study, published in Cancer Cell, showed that the powerful transcription factor complex Snail-G9a-Dnmt1 is over-expressed in triple-negative breast cancer, inhibiting the enzyme 1,6-bisphosphate (FBP1). The loss of this enzyme shuts down the glucose anabolic pathway and promotes the glucose catabolic pathway, leading to a large amount of glucose entering the tumor cells and thus "feeding" the aggressive cancer. This metabolic switch empowers the triple-negative breast cancer cells to suck more glucose from the body, increasing macromolecule biosynthesis in tumor cells and maintaining ATP production despite a dearth of nutrients and an oxygen-free environment.

Triple-negative breast cancer is the most deadly subtype of breast cancer, and tends to occur in women at a younger age. This subtype of breast cancer has poor clinical outcomes due to the early metastasis of tumor cells, resistance to chemotherapy, and the lack of specific drugs that target it. Identifying this change in the cancer's metabolic process provides major insight into developing drugs to target the disease, Zhou says.

"These findings present significant insights regarding the development and progression of triple-negative breast cancer," said Zhou, associate professor of molecular and cellular biochemistry at UK. "They indicate that targeting the metabolic alteration will lead to an effective approach for treating this deadly disease."

Zhou's research was aided by the team in the Free Radical Biology in Cancer Shared Resource Facility (FRBC) of the Markey Cancer Center, directed by Dr. Allan Butterfield. The FRBC used an instrument called the Seahorse XF-96 Flux Analyzer to test and confirm the predictions of Zhou's findings in triple-negative breast cancer.

"The significance of this study rests in proving that triple negative breast cancer cells utilize glycolysis for survival and growth," Butterfield said. "The FRBC will assist Dr. Zhou in furthering this exciting research, potentially helping to identify key proteins in triple negative breast cancer cells that are expressed or modified differently than in control cells. Such knowledge may lead to new insights to potential approaches to treat this aggressive cancer."

Previously, Zhou has studied the role of the Snail complex in the cellular program known as the epithelial-mesenchymal transition (EMT), which is responsible for metastasis.

The study was also a collaboration with scientists at the University of Louisville (Dr. Teresa Fan) and at the University of Texas MD Anderson Cancer Center (Drs. Mien-Chie Hung and Jun Yao).


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Cite This Page:

University of Kentucky. "Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows." ScienceDaily. ScienceDaily, 28 February 2013. <www.sciencedaily.com/releases/2013/02/130228155519.htm>.
University of Kentucky. (2013, February 28). Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/02/130228155519.htm
University of Kentucky. "Key enzyme missing from aggressive form of breast cancer, groundbreaking study shows." ScienceDaily. www.sciencedaily.com/releases/2013/02/130228155519.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins