Featured Research

from universities, journals, and other organizations

A vaccine that works in newborns? Promising compound may help protect babies during vulnerable window

Date:
March 4, 2013
Source:
Boston Children's Hospital
Summary:
The underdeveloped immune systems of newborns don't respond to most vaccines, leaving them at high risk for infections like rotavirus, pertussis (whooping cough) and pneumococcus. Researchers have identified a potent compound that activates immune responses in newborns' white blood cells substantially better than anything previously tested, and that could potentially make vaccines effective right at birth.

The underdeveloped immune systems of newborns don't respond to most vaccines, leaving them at high risk for infections like rotavirus, pertussis (whooping cough) and pneumococcus. Researchers at Boston Children's Hospital have identified a potent compound that activates immune responses in newborns' white blood cells substantially better than anything previously tested, and that could potentially make vaccines effective right at birth.

Related Articles


The ability to immunize babies at birth -- rather than two months of age, when most current vaccination series begin -- would be a triumph for global health. Worldwide, each year, infections kill more than 2 million infants under 6 months old. In resource-poor countries, birth may be the only time a child has contact with a health care provider.

While newborns lack most aspects of the immune response, researchers led by Ofer Levy, MD, PhD, of the Division of Infectious Disease at Boston Children's have shown that their white blood cells do have one receptor that responds strongly to stimulation, known as Toll-like receptor 8 (TLR 8). In their new work, published March 4 by the online open-access journal PLoS ONE, they tested a panel of synthetic small-molecule compounds that specifically target TLR8, known chemically as benzazepines.

The compounds, provided by VentiRx Pharmaceuticals (Seattle, WA), potently stimulate the human immune system and are in clinical trials in patients with certain cancers.

Tested in Levy's lab, one benzazepine, VTX-294, produced a strong immune response in white blood cells from newborns (taken from cord blood samples) as well as whole blood from adults. It induced robust production of cytokines -- chemicals that rally the immune response -- and proved at least 10 times more potent than the best activator of TLR8 known previously.

"The response was not only equal to that in adults, but VTX 294 was sometimes actually more effective in newborns than adults," notes Levy, the study's senior investigator.

The compound also triggered production of so-called co-stimulatory molecules that enhance immune responses. Moreover, even very low concentrations of VTX-294 strongly activated antigen-presenting cells, a type of white blood cell whose activation induces immune memory -- key to effective responses to vaccines.

Toll-like receptors (TLRs), first identified in humans about two decades ago, are part of the innate (rapid) immune response that provides our first defense against infections. Ten types of TLRs are known, and TLR stimulators have begun to be added to vaccines as adjuvants. The main one, monophosphoryl lipid A (MPLA), stimulates TLR4 and is used in the human papillomavirus vaccine Cervarix. However, in a recent clinical trial published in The New England Journal of Medicine, a malaria vaccine with MPLA failed to elicit a sufficient immune response in infants.

With encouraging results in cells from human newborns, Levy and colleagues now hope to formulate VTX 294 or a similar TLR8 stimulator for testing as a vaccine adjuvant in newborn primates, a model in which the lab has expertise, and whose responses to TLR8 closely resemble humans'.

"This one receptor seems to lead to more adult-like responses -- immediate, short-term responses that are more appropriate for fighting infections," says David Dowling, PhD, co-first author on the study. "We're excited about the benzazepines because they are already in the clinical pipeline. That advances the potential for using them in a clinical study in human newborns, once they have been proven safe in animal studies."


Story Source:

The above story is based on materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. David J. Dowling, Zhen Tan, Zofia M. Prokopowicz, Christine D. Palmer, Maura-Ann H. Matthews, Gregory N. Dietsch, Robert M. Hershberg, Ofer Levy. The Ultra-Potent and Selective TLR8 Agonist VTX-294 Activates Human Newborn and Adult Leukocytes. PLoS ONE, 2013; 8 (3): e58164 DOI: 10.1371/journal.pone.0058164

Cite This Page:

Boston Children's Hospital. "A vaccine that works in newborns? Promising compound may help protect babies during vulnerable window." ScienceDaily. ScienceDaily, 4 March 2013. <www.sciencedaily.com/releases/2013/03/130304211452.htm>.
Boston Children's Hospital. (2013, March 4). A vaccine that works in newborns? Promising compound may help protect babies during vulnerable window. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2013/03/130304211452.htm
Boston Children's Hospital. "A vaccine that works in newborns? Promising compound may help protect babies during vulnerable window." ScienceDaily. www.sciencedaily.com/releases/2013/03/130304211452.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins