Featured Research

from universities, journals, and other organizations

Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices

Date:
March 18, 2013
Source:
The Korea Advanced Institute of Science and Technology (KAIST)
Summary:
Nonvolatile memory that can store data even when not powered is currently used for portable electronics such as smart phones, tablets, and laptop computers. Flash memory is a dominant technology in this field, but its slow writing and erasing speed has led to extensive research into a next-generation nonvolatile memory called Phase-Change Random Access Memory (PRAM), as PRAM's operating speed is 1,000 times faster than that of flash memory. Scientists have now developed a phase-change memory with low power consumption (below 1/20th of its present level) by employing self-assembled block copolymer silica nanostructures.

Various self-assembled nanostructures are inserted for the significant power reduction of conventional phase-change memory.
Credit: KAIST

Nonvolatile memory that can store data even when not powered is currently used for portable electronics such as smart phones, tablets, and laptop computers. Flash memory is a dominant technology in this field, but its slow writing and erasing speed has led to extensive research into a next-generation nonvolatile memory called Phase-Change Random Access Memory (PRAM), as PRAM's operating speed is 1,000 times faster than that of flash memory.

PRAM uses reversible phase changes between the crystalline (low resistance) and amorphous (high resistance) state of chalcogenide materials, which corresponds to the data "0" and "1," respectively. Although PRAM has been partially commercialized up to 512 Mb by Samsung Electronics Co., Ltd., its writing current should be decreased by at least one-third of its present level for the mass production of mobile electronics applications.

A team of Professors Keon Jae Lee and Yeon Sik Jung in the Department of Materials Science and Engineering at KAIST has developed phase-change memory with low power consumption (below 1/20th of its present level) by employing self-assembled block copolymer (BCP) silica nanostructures.

BCP is the mixture of two different polymer materials, which can easily create self-ordered arrays of sub-20 nm features through simple spin-coating and plasma treatments. PRAM can lower switching power consumption by making the contact area smaller between the heating layer and phase change materials. Professor Lee's team successfully decreased the size of the contact area and the level of power consumption by incorporating self-assembled silica nanostructures on top of conventional phase-change materials. Interestingly, these self-assembled nanomaterials are able to reduce power much more than expected with localized nano-switching mechanisms.

Professor Keun-Jae Lee said, "This is a very good example that self-assembled, bottom-up nanotechnology can actually enhance the performance of electronic devices. We also achieved a significant power reduction through a simple process that is compatible with conventional device structures and existing lithography tools."

The research team is currently investigating self-assembled BCP applications for resistive random access memory and flexible electronic devices.


Story Source:

The above story is based on materials provided by The Korea Advanced Institute of Science and Technology (KAIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Woon Ik Park, Byoung Kuk You, Beom Ho Mun, Hyeon Kook Seo, Jeong Yong Lee, Sumio Hosaka, You Yin, C. A. Ross, Keon Jae Lee, Yeon Sik Jung. Self-Assembled Incorporation of Modulated Block Copolymer Nanostructures in Phase-Change Memory for Switching Power Reduction. ACS Nano, 2013; 130311083523009 DOI: 10.1021/nn4000176

Cite This Page:

The Korea Advanced Institute of Science and Technology (KAIST). "Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices." ScienceDaily. ScienceDaily, 18 March 2013. <www.sciencedaily.com/releases/2013/03/130318105317.htm>.
The Korea Advanced Institute of Science and Technology (KAIST). (2013, March 18). Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/03/130318105317.htm
The Korea Advanced Institute of Science and Technology (KAIST). "Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices." ScienceDaily. www.sciencedaily.com/releases/2013/03/130318105317.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins