Featured Research

from universities, journals, and other organizations

New nanomedicine resolves inflammation, promotes tissue healing

Date:
March 19, 2013
Source:
Columbia University Medical Center
Summary:
Researchers have developed biodegradable nanoparticles that are capable of delivering inflammation-resolving drugs to sites of tissue injury. The nanoparticles, which were successfully tested in mice, have potential for the treatment of a wide array of diseases characterized by excessive inflammation, such as atherosclerosis.

Scientists have developed biodegradable nanoparticles that are capable of delivering inflammation-resolving drugs to sites of tissue injury. The nanoparticles, which were successfully tested in mice, have potential for the treatment of a wide array of diseases characterized by excessive inflammation, such as atherosclerosis.
Credit: mgkuijpers / Fotolia

A multicenter team of researchers, including scientists at Columbia University Medical Center (CUMC), Brigham and Women's Hospital (BWH), Mount Sinai School of Medicine, and Massachusetts Institute of Technology, has developed biodegradable nanoparticles that are capable of delivering inflammation-resolving drugs to sites of tissue injury. The nanoparticles, which were successfully tested in mice, have potential for the treatment of a wide array of diseases characterized by excessive inflammation, such as atherosclerosis.

Related Articles


The study was published today in the online edition of the Proceedings of the National Academy of Sciences.

A key way in which the body protects itself against infection or injury is through acute inflammation. Ideally, this response first promotes the clearance of pathogens or damaged tissue; then, through a process called inflammation resolution, it clears cellular debris and inflammatory mediators and restores the tissue to its normal state. However, in many conditions, including heart disease, arthritis, and neurodegenerative diseases, the inflammatory process never resolves, leading to tissue damage.

"A variety of medications can be used to control inflammation. Such treatments, however, usually have significant side effects and dampen the positive aspects of the inflammatory response," said co-senior author Ira Tabas, MD, PhD, the Richard J. Stock Professor, Department of Medicine, and professor of Pathology & Cell Biology (in Physiology and Cellular Biophysics) at CUMC. The other co-senior author is Omid Farokhzad, MD, Associate Professor of Anesthesiology and Director of Laboratory of Nanomedicine and Biomaterials at Brigham and Women's Hospital (BWH).

To overcome these obstacles, the researchers incorporated two advances. First, based on an idea from co-lead author Gabrielle Fredman, PhD, a postdoctoral fellow at CUMC, they took advantage of a 24-amino-acid peptide, Ac2-26, which is derived from a naturally occurring protein mediator of inflammation resolution called annexin A1. Second, rather than simply inject the "naked" peptide into injured mice, they packaged the peptide into nanoparticles, designed by the BWH group, that are able to target drugs to sites of tissue injury. The nanoparticles were given this ability through the addition of two components: one that gives them stealthlike properties, enabling them to avoid detection and clearance by white blood cells and the liver; and a second that gives them the ability to target collagen IV, a protein found at sites of tissue injury.

Each nanoparticle is less than 100 nanometers in diameter, or 1/100,000th the diameter of a human hair.

The nanoparticles were tested in mice with peritonitis (inflammation of the peritoneum, the thin tissue that lines the inner wall of the abdomen) or hind-limb ischemia-reperfusion injury (tissue damage caused when blood supply returns to tissue after a period of ischemia, or lack of oxygen). In the mice with peritonitis, intravenous administration of the Ac2-26-containing nanoparticles was significantly more effective at limiting recruitment of neutrophils (a type of inflammatory white blood cell) and at increasing the resolution of inflammation than was intravenous administration of naked Ac2-26. In mice with reperfusion injury, the nanoparticles reduced tissue damage in comparison with either of two types of control nanoparticles: those with a peptide in which the 24 amino acids were scrambled to render it biologically inactive and Ac2-26 nanoparticles without the collagen IV-targeting component.

"These targeted polymeric nanoparticles are capable at very small doses of stopping neutrophils, the most abundant form of white blood cells, from infiltrating sites of disease or injury," said co-lead author Nazila Kamaly, PhD, a postdoctoral fellow at BWH. "This action stops the neutrophils from secreting further signaling molecules that can lead to a constant hyper-inflammatory state and further disease complications."

"The beauty of this approach is that, unlike many other anti-inflammatory approaches, it takes advantage of nature's own design for preventing inflammation-induced damage, which does not compromise host defense and promotes tissue repair," said Dr. Tabas.

While the nanoparticles do spread to tissues throughout the body, they tend to concentrate in areas of inflammation. "In theory, this should allow physicians to use smaller-than-usual doses of medications and reduce unwanted side effects," said Dr. Fredman.

The team is currently designing nanoparticles for the treatment of atherosclerosis. Preliminary studies show that the nanoparticles are capable of targeting atherosclerotic plaques.

The authors have filed a patent for targeted polymeric inflammation-resolving nanoparticles to treat a variety of chronic inflammatory diseases, including atherosclerosis, autoimmune disease, type 2 diabetes, and Alzheimer's disease.

The paper is titled, "Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles." The other contributors are Manikandan Subramanian (CUMC), Suresh Gadde (BWH), Aleksandar Pesic (BWH), Louis Cheung (BWH), Zahi Adel Fayad (Mount Sinai School of Medicine), and Robert Langer (Massachusetts Institute of Technology).

This research was supported by a Program of Excellence in Nanotechnology Award from the National Heart, Lung, and Blood Institute (HHSN268201000045), a grant from the National Institutes of Health (CA151884), and a David Koch-Prostate Cancer Foundation Award in Nanotherapeutics.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Columbia University Medical Center. "New nanomedicine resolves inflammation, promotes tissue healing." ScienceDaily. ScienceDaily, 19 March 2013. <www.sciencedaily.com/releases/2013/03/130319091008.htm>.
Columbia University Medical Center. (2013, March 19). New nanomedicine resolves inflammation, promotes tissue healing. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/03/130319091008.htm
Columbia University Medical Center. "New nanomedicine resolves inflammation, promotes tissue healing." ScienceDaily. www.sciencedaily.com/releases/2013/03/130319091008.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Clearing Up Inflammation With Pro-Resolving Nanomedicines

Mar. 18, 2013 A new study presents the development of tiny nanomedicines in the sub 100 nm range (100,000 times smaller than the diameter of a human hair strand) that are capable of encapsulating and releasing an ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins