Featured Research

from universities, journals, and other organizations

New lung cancer study takes page from Google's playbook

Date:
March 25, 2013
Source:
University of Southern California
Summary:
A new study shows that the same sort of mathematical model that Google uses to predict which websites people want to visit may help researchers predict how lung cancer spreads through the human body.

The same sort of mathematical model used to predict which websites people are most apt to visit is now showing promise in helping map how lung cancer spreads in the human body, according to a new study published in the journal Cancer Research.

Related Articles


A team of researchers used an algorithm similar to the Google PageRank and to the Viterbi Algorithm for digital communication to analyze the spread patterns of lung cancer. The team includes experts from the University of Southern California (USC), Scripps Clinic, The Scripps Research Institute, University of California, San Diego Moores Cancer Center and Memorial Sloan-Kettering in New York.

"This research demonstrates how similar the Internet is to a living organism," said USC Viterbi School of Engineering Professor Paul Newton, Ph.D., the lead and corresponding author of the study. "The same types of tools that help us understand the spread of information through the web can help us understand the spread of cancer through the human body."

Employing a sophisticated system of mathematical equations known as a Markov chain model, the research team -- guided by USC applied mathematicians- found that metastatic lung cancer does not progress in a single direction from primary tumor site to distant locations, which has been the traditional medical view. Instead, they found that cancer cell movement around the body likely occurs in more than one direction at a time.

Researchers also learned that the first site to which the cells spread plays a key role in the progression of the disease. The study showed that some parts of the body serve as "sponges" that are relatively unlikely to further spread lung cancer cells to other areas of the body. The study identified other areas as "spreaders" for lung cancer cells.

The study revealed that for lung cancer, the main spreaders are the adrenal gland and kidney, whereas the main sponges are the regional lymph nodes, liver and bone.

The study applied the advanced math model to data from human autopsy reports of 163 lung cancer patients in the New England area, from 1914 to 1943. This time period was targeted because it predates the use of radiation and chemotherapy, providing researchers a clear view of how cancer progresses if left untreated. Among the 163 patients, researchers charted the advancement patterns of 619 different metastases to 27 distinct body sites.

The study's findings could potentially impact clinical care by helping guide physicians to targeted treatment options, designed to curtail the spread of lung cancer. For example, if the cancer is found to have moved to a known spreader location, imaging tests and interventions can be quickly considered for focused treatment before the cells may be more widely dispersed. Further study is needed in this area.

Keeping tabs on cancer's movement in the body is vital to patient care. While a primary cancer tumor (confined to a single location) is often not fatal, a patient's prognosis can worsen if the cancer metastasizes -- that is, flakes off and travels to other parts of the body to form new tumors.

The study is part of a relatively new movement to involve physical sciences in oncology research. Mathematics probability models that interpret data from specific patient populations offer a new alternative to the established approach of relying on broader clinical trends to predict where, and how fast, cancer will spread.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. K. Newton, J. Mason, K. Bethel, L. Bazhenova, J. Nieva, L. Norton, P. Kuhn. Spreaders and sponges define metastasis in lung cancer: A Markov chain mathematical model. Cancer Research, 2013; DOI: 10.1158/0008-5472.CAN-12-4488

Cite This Page:

University of Southern California. "New lung cancer study takes page from Google's playbook." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325111150.htm>.
University of Southern California. (2013, March 25). New lung cancer study takes page from Google's playbook. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/03/130325111150.htm
University of Southern California. "New lung cancer study takes page from Google's playbook." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325111150.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins