Featured Research

from universities, journals, and other organizations

Nanoparticles show promise as inexpensive, durable and effective scintillators

Date:
March 25, 2013
Source:
American Institute of Physics
Summary:
Nanoparticles can be successfully incorporated into scintillation devices capable of detecting and measuring a wide energy range of X-rays and gamma rays, new research shows.

A team of industrial and university researchers has shown that nanoparticles with sizes smaller than 10 nanometers -- approximately the width of a cell membrane -- can be successfully incorporated into scintillation devices capable of detecting and measuring a wide energy range of X-rays and gamma rays emitted by nuclear materials.

The proof-of-concept study, described in the Journal of Applied Physics, suggests that "nanocrystals" -- nanoparticles clustered together to mimic the densely-packed crystals traditionally used in scintillation devices -- may one day yield radiation detectors that are easy and inexpensive to manufacture, can be produced quickly in large quantities, are less fragile, and capture most of the X-ray and gamma ray energies needed to identify radioactive isotopes. Earlier studies have shown that when X-rays or gamma rays strike these miniature, non-crystalline scintillators, some atoms within them are raised to a higher energy level. These atoms de-excite and give off their energy as optical photons in the visible and near-visible regions of the electromagnetic spectrum. The photons can be converted to electrical pulses, which, in turn, can be measured to quantify the X-ray and gamma radiation detected and help locate its source.

In the latest experiment, the researchers suspended nanoparticles of lanthanum halide and cerium tribromide (loaded in both 5 percent and 25 percent concentrations) in oleic acid to create nanocomposite scintillators with sizes between 2-5 nanometers. When compared to computer models and data from prior studies, the nanocomposite detectors matched up well in their ability to discern X-rays and gamma radiation. When compared to an existing radiation detection system of similar size that uses plastic, the 25 percent loaded nanocomposite fared better than the 5 percent loaded, but still was only about half as efficient. Therefore, the researchers conclude that more work is needed to refine and optimize their "nanocrystal" system.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O'Brien, Daniel Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013; 113 (6): 064303 DOI: 10.1063/1.4790867

Cite This Page:

American Institute of Physics. "Nanoparticles show promise as inexpensive, durable and effective scintillators." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325125605.htm>.
American Institute of Physics. (2013, March 25). Nanoparticles show promise as inexpensive, durable and effective scintillators. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/03/130325125605.htm
American Institute of Physics. "Nanoparticles show promise as inexpensive, durable and effective scintillators." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325125605.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins