Featured Research

from universities, journals, and other organizations

Small molecule disrupts cancer-causing protein

Date:
March 26, 2013
Source:
Moffitt Cancer Center
Summary:
Researchers have developed a small molecule that inhibits STAT3, a protein that causes cancer. This development could impact the treatment of several tumor types, including breast, lung, prostate and others that depend on STAT3 for survival.

Researchers at Moffitt Cancer Center and colleagues at the University of South Florida have developed a small molecule that inhibits STAT3, a protein that causes cancer. This development could impact the treatment of several tumor types, including breast, lung, prostate and others that depend on STAT3 for survival.

The study appeared in the Jan. 15 online issue of Cancer Research, a publication of the American Association for Cancer Research.

"STAT3 has been associated with poor prognosis and resistance to chemotherapy in patients with cancer," explained Said M. Sebti, Ph.D., chair of the Drug Discovery Department at Moffitt. "Two STAT3 molecules need to bind to each other, a process called dimerization, to cause malignancy. We developed a small molecule called S3I-1757 to prevent dimerization by disrupting STAT3-STAT3 binding. Once disrupted, STAT3's ability to help cancer cells survive, grow and invade is neutralized."

"Activated STAT3 contributes to cancer at several levels," said study co-author Nicholas J. Lawrence, Ph.D., senior member of Moffitt's Drug Discovery Department. "It triggers the uncontrolled proliferation, invasion and spread of cancer cells. That makes STAT3 an attractive target for drug discovery and therapy."

STAT3 was first found to be involved in malignant transformation in 1995, but researchers have been unable to develop an inhibitor for the protein. In part, the challenge stemmed from the fact that STAT3-STAT3 binding is a protein-protein interaction involving a large surface area, difficult to target with drug-like small molecules.

The researchers, who had been working on finding an inhibitor for STAT3-STAT3 dimerization for some time, recently overcame that challenge and demonstrated in laboratory studies that S31-1757 was effective in neutralizing STAT3's activity.

"We used several approaches to demonstrate that S31-1757 is able to inhibit malignant transformation by its ability to inhibit the STAT3 function," Sebti said. "These included targeting the ability of STAT3 to bind itself."

Their findings will be presented at the annual AACR meeting in April in Washington, D.C.

This study was partially supported by a National Cancer Institute grant (R01CA140681).


Story Source:

The above story is based on materials provided by Moffitt Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Zhang, Y. Sun, R. Pireddu, H. Yang, M. K. Urlam, H. R. Lawrence, W. C. Guida, N. J. Lawrence, S. M. Sebti. A Novel Inhibitor of STAT3 Homodimerization Selectively Suppresses STAT3 Activity and Malignant Transformation. Cancer Research, 2013; 73 (6): 1922 DOI: 10.1158/0008-5472.CAN-12-3175

Cite This Page:

Moffitt Cancer Center. "Small molecule disrupts cancer-causing protein." ScienceDaily. ScienceDaily, 26 March 2013. <www.sciencedaily.com/releases/2013/03/130326111954.htm>.
Moffitt Cancer Center. (2013, March 26). Small molecule disrupts cancer-causing protein. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/03/130326111954.htm
Moffitt Cancer Center. "Small molecule disrupts cancer-causing protein." ScienceDaily. www.sciencedaily.com/releases/2013/03/130326111954.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins