Featured Research

from universities, journals, and other organizations

A giant step toward miniaturization: Nanotechnology transforms molecular beams into functional nano-devices

Date:
April 3, 2013
Source:
Polytechnique Montréal
Summary:
Semiconductor nanowires are quasi-one-dimensional nanomaterials that have sparked a surge of interest as one of the most powerful and versatile nanotechnological building blocks with actual or potential impact on nanoelectronics, photonics, electromechanics, environmentally friendly energy conversion, biosensing, and neuro-engineering technologies.

Bottom-up synthesis of nanowires through metal-catalyzed vapor phase epitaxy is a very attractive process to generate high-quality nanowires thus providing an additional degree of freedom in design of innovative devices that extend beyond what is achievable with the current technologies.

In this nano-fabrication process, nanowires grow through the condensation of atoms released from a molecular vapor (called precursors) at the surface of metallic nano-droplets. Gold is broadly used to form these nano-droplets. This self-assembly of nanowires takes place spontaneously at optimal temperature and vapor pressure and can be applied to synthesize any type of semiconductor nanowires.

However, to functionalize these nanomaterials a precise introduction of impurities is central to tune their electronic and optical properties. For instance, the introduction of group III and V impurities in a silicon lattice is a crucial step for optimal design and performance of silicon nanowire technologies. The accurate control of this doping process remains an outstanding challenge that is increasingly complex as a result of the relentless drive toward device miniaturization and the emergence of novel nanoscale device architectures.

In a recent development, a team of scientists from Polytechnique Montréal (Canada), Northwestern University (USA), and Max Planck Institute of Microstructure Physics (Germany) led by Professor Oussama Moutanabbir has made a fascinating discovery of a novel process to precisely functionalize nanowires. By using aluminum as a catalyst instead of the canonical gold, the team demonstrated that the growth of nanowires triggers a self-doping process involving the injection of aluminum atoms thus providing an efficient route to dope nanowires without the need of post-growth processing typically used in semiconductor industry. Besides the technological implications, this self-doping implies atomic scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires.

The scientists investigated this phenomenon at the atomistic-level using the emerging technique of highly focused ultraviolet laser-assisted atom-probe tomography to achieve three-dimensional atom-by-atom maps of individual nanowires. A new predictive theory of impurity injections was also developed to describe this self-doping phenomenon, which provides myriad opportunities to create entirely new class of nanoscale devices by precisely tailoring shape and composition of nanowires.

The results of their breakthrough will be published in Nature.


Story Source:

The above story is based on materials provided by Polytechnique Montréal. Note: Materials may be edited for content and length.


Journal Reference:

  1. Oussama Moutanabbir, Dieter Isheim, Horst Blumtritt, Stephan Senz, Eckhard Pippel, David N. Seidman. Colossal injection of catalyst atoms into silicon nanowires. Nature, 2013; 496 (7443): 78 DOI: 10.1038/nature11999

Cite This Page:

Polytechnique Montréal. "A giant step toward miniaturization: Nanotechnology transforms molecular beams into functional nano-devices." ScienceDaily. ScienceDaily, 3 April 2013. <www.sciencedaily.com/releases/2013/04/130403154422.htm>.
Polytechnique Montréal. (2013, April 3). A giant step toward miniaturization: Nanotechnology transforms molecular beams into functional nano-devices. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/04/130403154422.htm
Polytechnique Montréal. "A giant step toward miniaturization: Nanotechnology transforms molecular beams into functional nano-devices." ScienceDaily. www.sciencedaily.com/releases/2013/04/130403154422.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins