Featured Research

from universities, journals, and other organizations

Hepatitis A virus discovered to cloak itself in membranes hijacked from infected cells

Date:
April 4, 2013
Source:
University of North Carolina School of Medicine
Summary:
Viruses have historically been classified into one of two types – those with an outer lipid-containing envelope and those without an envelope. For the first time, researchers have discovered that hepatitis A virus, a common cause of enterically-transmitted hepatitis, takes on characteristics of both virus types depending on whether it is in a host or in the environment.

A pathogenic picornavirus acquires an envelope by hijacking cellular membranes.
Credit: Nature (2013), Published online March 31, 2013

Viruses have historically been classified into one of two types -- those with an outer lipid-containing envelope and those without an envelope. For the first time, researchers at the University of North Carolina have discovered that hepatitis A virus, a common cause of enterically-transmitted hepatitis, takes on characteristics of both virus types depending on whether it is in a host or in the environment.

"The whole universe of virology is divided into two types of viruses -- viruses that are enveloped and viruses that are not enveloped. If you look at any basic virology textbook, it will say that these are categories that distinguish all viruses," said lead researcher Stanley M. Lemon, MD, professor of medicine and a member of UNC Lineberger and the Center for Translational Immunology.

In a paper published online in Nature on March 31, Dr. Lemon's team discovered that hepatitis A virus does not have an envelope when found in the environment, but acquires one from the cells that it grows in within the liver. It circulates in the blood completely cloaked in these membranes.

"What we have discovered is that a virus that has been classically considered to be 'non-enveloped', that is hepatitis A virus, actually hijacks membranes from the cells it grows in to wrap itself in an envelope. It steals membranes from the cell, as it leaves the cell, to cloak itself in this envelope that then protects it from antibodies. And that's really novel. No one has shown that previously for a virus. It really blurs that classic distinction between these two types of viruses," said Dr. Lemon.

Being enveloped in host membranes helps the virus to evade host immune systems and spread within the liver. Enveloped viruses are generally quite fragile in the environment, while non-enveloped viruses are hardier outside of a host and can survive for longer periods between hosts. Dr. Lemon believes the dual nature of hepatitis A virus allows it to use the advantages of both virus types to enhance its survivability.

"What hepatitis A virus has done, and we don't totally understand how it has accomplished this, is to have the advantage of existing as a virus with no envelope and being very stable in the environment so it can be transmitted efficiently between people, but to wrap itself in a membrane to evade neutralizing antibodies and facilitate its spread within the host once it has infected a person," said Lemon. While no other virus has been shown to exhibit this particular behavior, Dr. Lemon said that it is likely that hepatitis A virus is not unique in its dual nature. Hepatitis A is endemic in developing nations that lack modern sanitation and clean water. The virus is transmitted orally and then passed back into the environment through feces. By not needing its envelope to survive outside the host, the virus gains the ability of non-enveloped viruses to survive longer and be transmitted efficiently.

One major question raised by the finding is why the hepatitis A vaccine works so well to contain the infection. The vaccine, one of the most effective in use, was thought to elicit neutralizing antibodies that attack the virus in the blood. Since it is now known that the envelope surrounding the virus in the blood prevents this, the vaccine cannot work as previously thought.

"It makes us rethink completely the mechanism underlying the well-documented efficacy of hepatitis A vaccine. I think this is one of the most important things to come out of the study," said Dr. Lemon.

The research at UNC was funded by the National Institute of Allergy and Infectious Diseases. Future studies will investigate the mechanisms behind the vaccine's effectiveness, Dr. Lemon said. While it was previously thought that vaccine-induced antibodies attacked the virus outside of the cell, the new findings suggest antibodies may actually be able to restrict viral replication within a cell.

"Understanding how this really good vaccine works will help us in the future to develop better vaccines for other viruses that we are having difficulty developing vaccines for," said Dr. Lemon.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zongdi Feng, Lucinda Hensley, Kevin L. McKnight, Fengyu Hu, Victoria Madden, LiFang Ping, Sook-Hyang Jeong, Christopher Walker, Robert E. Lanford, Stanley M. Lemon. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 2013; DOI: 10.1038/nature12029

Cite This Page:

University of North Carolina School of Medicine. "Hepatitis A virus discovered to cloak itself in membranes hijacked from infected cells." ScienceDaily. ScienceDaily, 4 April 2013. <www.sciencedaily.com/releases/2013/04/130404121835.htm>.
University of North Carolina School of Medicine. (2013, April 4). Hepatitis A virus discovered to cloak itself in membranes hijacked from infected cells. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/04/130404121835.htm
University of North Carolina School of Medicine. "Hepatitis A virus discovered to cloak itself in membranes hijacked from infected cells." ScienceDaily. www.sciencedaily.com/releases/2013/04/130404121835.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins