Featured Research

from universities, journals, and other organizations

Plasmonics: A flexible bridge between two worlds

Date:
April 10, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A novel material shows its credentials to facilitate the integration of photonic and electronic components in practical devices.

A novel material shows its credentials to facilitate the integration of photonic and electronic components in practical devices.

Many devices used in everyday life -- whether they be televisions, mobile phones or barcode scanners -- are based on the manipulation of electric currents and light. At the micro- and nano-scales, however, it is typically challenging to integrate electronic components with photonic components. At these small dimensions, the wavelengths of light become long relative to the size of the device. Consequently, the light waves are barely detectable by the device, just as passing waves simply roll past thin poles in a water body.

Better integration of photonic and electronic components in nanoscale devices may now become possible, thanks to work by Khuong Phuong Ong and Hong-Son Chu from the A*STAR Institute of High Performance Computing and their co-workers in Singapore and the US. From computer simulations, they have identified that the compound BiFeO3 has the potential to be used to efficiently couple light to electrical charges through light-induced electron oscillations known as plasmons. The researchers propose that this coupling could be activated, controlled and switched off, on demand, by applying an electrical field to an active plasmonic device based on this material. If such a device were realized on a very small footprint it would give scientists a versatile tool for connecting components that manipulate light or electric currents.

"The fact that, in theory, the properties of BiFeO3 [could] be [so readily controlled] by applying an electric field makes it a promising material for high-performance plasmonic devices," explains Ong. He says that they expected such favorable properties after they had calculated the behavior of the material. But when they studied the behavior of the proposed BiFeO3-based device, they found that it could outperform devices based on BaTiO3, which is one of the best materials currently used for such applications.

Like BaTiO3, BiFeO3 can be fabricated relatively easily and cheaply. The new material is therefore a particularly promising candidate for device applications. Ong, Chu and their collaborators will now explore that potential. "We will design BiFeO3 nanostructures optimized for applications such as optical devices for data communication, sensing and solar-energy conversion," says Ong.

According to Ong and Chu, an important step on the path to producing practical devices will be assessing the compatibility of BiFeO3-based structures with standard technologies, which typically use materials known as metal-oxide semiconductors. This future work will involve collaborations with experimental groups at the A*STAR Institute of Materials Research and Engineering and at the National University of Singapore.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. S.H. Chu, D.J. Singh, J. Wang, E.-P. Li, K.P. Ong. High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3. Laser & Photonics Reviews, 2012; 6 (5): 684 DOI: 10.1002/lpor.201280022

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Plasmonics: A flexible bridge between two worlds." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410114117.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, April 10). Plasmonics: A flexible bridge between two worlds. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/04/130410114117.htm
The Agency for Science, Technology and Research (A*STAR). "Plasmonics: A flexible bridge between two worlds." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410114117.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins