Featured Research

from universities, journals, and other organizations

Neurodegenerative disease advance: Study details how brain enzyme interacts with drug-like lead compound for Huntington's

Date:
April 10, 2013
Source:
University of Manchester
Summary:
A significant breakthrough has been made towards developing an effective treatment for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's. Researchers have detailed how an enzyme in the brain interacts with a promising drug-like lead compound for Huntington's disease to inhibit its activity. Their findings demonstrate that it can be developed as an effective treatment for neurodegenerative diseases.

A significant breakthrough has been made towards developing an effective treatment for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's.
Credit: Ocskay Bence / Fotolia

A significant breakthrough has been made by scientists at The University of Manchester towards developing an effective treatment for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's.

Researchers at the Manchester Institute of Biotechnology have detailed how an enzyme in the brain interacts with an exciting drug-like lead compound for Huntington's Disease to inhibit its activity. Their findings demonstrate that it can be developed as an effective treatment for neurodegenerative diseases. The research is published in the journal Nature.

Working with colleagues at the University of Leicester and the University of Lisbon in Portugal, the researchers identified the molecular structure of the enzyme kynurenine 3-monooxygense (KMO), which is found in the human brain. It took five years for the team to establish the crystal structure of KMO -- the first time it's ever been done.

The scientists then studied how the compound UPF 648 binds incredibly tightly to the enzyme to act as an inhibitor. Previous studies with animal models of neurodegenerative disease have showed that switching off the enzyme activity through drug binding should be effective in the treatment of brain disorders.

Professor Nigel Scrutton who led the study said: "UPF 648 works very well as an inhibitor of enzyme activity. However, in its current form it does not pass into the brain from the blood. The search is now on for related compounds that can both inhibit the enzyme and pass into the brain."

He continues: "Our research detailing the molecular structure of the enzyme now enables a search for new KMO inhibitors that are able to cross the blood-brain barrier. This provides real hope for developing drug therapies to target neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases."

Dr Flaviano Giorgini, the team's neurogeneticist from the University of Leicester, said: "This is a big move forward for the development of new KMO inhibiting drugs. It is hoped that such compounds may ultimately be tested in clinical trials and prove beneficial for patients."

The findings from this research will now be used in the search for more effective treatments for Huntington's Disease.

Professor Sarah Tabrizi is the head of the Huntington's disease research team at University College London's Institute for Neurology. Commenting on the research she says: "Unlocking the crystal structure of KMO is a real boost to our efforts to find treatments for this devastating disease. It provides a solid basis for the optimisation of inhibitor drugs like UPF 648 that are being developed by the global Huntington's disease research community. KMO is one of our top drug targets, and the crystal structure is a significant step along our roadmap to clinical trials of KMO inhibitors in patients."

Cath Stanley, Chief Executive of the Huntington's Disease Association also welcomed the findings: "This research is a really exciting piece of the jigsaw that enables us to understand a little more and takes us a step closer to being able to provide an effective treatment for Huntington's Disease."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marta Amaral, Colin Levy, Derren J. Heyes, Pierre Lafite, Tiago F. Outeiro, Flaviano Giorgini, David Leys, Nigel S. Scrutton. Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013; DOI: 10.1038/nature12039

Cite This Page:

University of Manchester. "Neurodegenerative disease advance: Study details how brain enzyme interacts with drug-like lead compound for Huntington's." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410131219.htm>.
University of Manchester. (2013, April 10). Neurodegenerative disease advance: Study details how brain enzyme interacts with drug-like lead compound for Huntington's. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/04/130410131219.htm
University of Manchester. "Neurodegenerative disease advance: Study details how brain enzyme interacts with drug-like lead compound for Huntington's." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410131219.htm (accessed July 26, 2014).

Share This




More Mind & Brain News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins