Featured Research

from universities, journals, and other organizations

Scientists advance understanding of human brown adipose tissue and grow new cells

Date:
April 22, 2013
Source:
Joslin Diabetes Center
Summary:
Scientists have reported significant findings about the location, genetic expression and function of human brown adipose tissue (BAT) and the generation of new BAT cells.

oslin scientists report significant findings about the location, genetic expression and function of human brown adipose tissue (BAT) and the generation of new BAT cells. These findings, which appear in the April 2013 issue of Nature Medicine, may contribute to further study of BAT's role in human metabolism and developing treatments that use BAT to promote weight loss.

Two types of adipose (fat) tissue -- brown and white -- are found in mammals. Unlike the more predominant white adipose tissue (WAT) which stores fat, BAT burns fat to produce heat when the body is exposed to cold and also plays a role in energy metabolism. Human studies have shown that greater quantities of BAT are associated with lower body weight. BAT has been a major focus of study among scientists and pharmaceutical companies based on its potential as a treatment to combat obesity, a major risk factor for type 2 diabetes.

Studies in mice have identified two types of BAT: constitutive or "classical" BAT which is present at birth and persists throughout life and recruitable or "beige" BAT which can be produced from within white fat in response to metabolic conditions. These two types of BAT may also be present in humans.

Previous studies have identified the human neck as a primary location for BAT deposits. To determine the precise locations of these deposits, Joslin scientists obtained fat samples from five neck regions of patients undergoing neck surgery. Analysis of the samples showed that BAT was most abundant in deep regions of the neck, near the carotid sheath and longus colli muscles. These samples expressed the BAT marker gene, uncoupling protein 1 (UCP1), which is involved in heat generation. "BAT is most abundant in the deep locations of the neck, close to the sympathetic chain and the carotid arteries, where it likely helps to warm blood and raise body temperature. Now that we know where brown fat is, we can easily collect more cells for further study," says Aaron M. Cypess, M.D., Ph.D., senior author and Assistant Investigator in the Section of Integrative Physiology and Metabolism and Assistant Professor at Harvard Medical School.

In analyzing genetic expression in superficial and deep human neck fat tissue, the fat from deep locations was found to most closely resemble cells from constitutive mouse BAT, the kind already known to consume large quantities of glucose and fat.

The Joslin scientists compared the oxygen consumption rate (OCR), which demonstrates the capacity to burn calories, of human BAT cells to mouse constitutive BAT cells and human WAT. This is the first study to directly measure brown fat cells' OCR at baseline. The OCR of the human BAT cells from the deep location next to the longus colli was nearly 50 percent of the mouse BAT cells; in contrast, the OCR of human WAT was only one-hundredth of the OCR found in the most active human BAT from the longus colli depot. "We show that at baseline, brown fat cells have a great capacity to burn fat," says Dr. Cypess.

The scientists were able to grow new functional brown fat cells (adipocytes) by differentiating precursor cells (preadipocytes) derived from both superficial and deep human neck fat tissue. When stimulated, the cells expressed the same genes as naturally occurring brown fat cells. This is the first report of the production of brown fat cells (adipogenesis) that can respond to pharmacological stimulation.

The Joslin scientists are following up on this study to learn more about the functions of BAT, including how it affects energy balance and uses glucose. Having the ability to produce brown fat cells outside the body will make it possible to develop drugs and other potential treatments that increase BAT activity to combat obesity. "Our research has significant practical applications. If we stimulate the growth of brown fat in people, it may burn their white fat and help them lose weight, which lessens insulin resistance and improves diabetes," says Dr. Cypess.

This study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Harvard University and its affiliated academic health care centers, the Harvard Stem Cell Institute, and Eli Lilly Foundation.


Story Source:

The above story is based on materials provided by Joslin Diabetes Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aaron M Cypess, Andrew P White, Cecile Vernochet, Tim J Schulz, Ruidan Xue, Christina A Sass, Tian Liang Huang, Carla Roberts-Toler, Lauren S Weiner, Cathy Sze, Aron T Chacko, Laura N Deschamps, Lindsay M Herder, Nathan Truchan, Allison L Glasgow, Ashley R Holman, Alina Gavrila, Per-Olof Hasselgren, Marcelo A Mori, Michael Molla, Yu-Hua Tseng. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine, 2013; DOI: 10.1038/nm.3112

Cite This Page:

Joslin Diabetes Center. "Scientists advance understanding of human brown adipose tissue and grow new cells." ScienceDaily. ScienceDaily, 22 April 2013. <www.sciencedaily.com/releases/2013/04/130422175840.htm>.
Joslin Diabetes Center. (2013, April 22). Scientists advance understanding of human brown adipose tissue and grow new cells. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/04/130422175840.htm
Joslin Diabetes Center. "Scientists advance understanding of human brown adipose tissue and grow new cells." ScienceDaily. www.sciencedaily.com/releases/2013/04/130422175840.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins