Featured Research

from universities, journals, and other organizations

Microelectronics: Taking the heat off microfluidic chips

Date:
April 24, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Replacing a high-temperature processing technique with an infrared treatment allows the manufacture of tiny devices without damaging the polymer components.

Replacing a high-temperature processing technique with an infrared treatment allows the manufacture of tiny devices without damaging the polymer components.

Microfluidic devices are allowing microelectronic engineers to shrink laboratories to the size of a computer chip. By ferrying reagents through a series of microscopic channels and reservoirs carved into a flat plate, researchers can develop new chemical reactions or monitor the cellular effects of drugs on a much smaller scale, potentially saving time and money.

Some of these microfluidic devices even have electrical components that act as heaters or sensors, for example. But researchers have struggled to develop a rapid, low-cost method for creating the detailed metal patterns that make up these circuits.

Conventional techniques tend to require high-temperature processing, which can damage the transparent polymers typically used to build microfluidic devices, such as polycarbonate (PC) or poly(methyl methacrylate) (PMMA). Despite this drawback, the polymers are preferred over more robust alternatives because they "have very good optical properties, which most microfluidic devices require, and they are viable for plastic injection molding, which enables high-volume production," explains Zhaohong Huang of the A*STAR Singapore Institute of Manufacturing Technology.

Huang and his co-workers developed an alternative process that avoids exposing the polymers to high temperatures, and used it to build complex metal-patterned microfluidic devices (see image)1. They first covered sheets of PC or PMMA with thin layers of chromium, copper and nickel, and added a coating of a light-sensitive material called a photoresist. At this stage, the 'sandwich' would normally be baked at around 100 C to remove any residual solvents after the coating process. But these temperatures would soften and warp the polymer, potentially cracking or loosening the metal layer.

Instead, Huang's team used infrared heating elements to eliminate the solvents. The metal layer acted as a protective barrier, reflecting more than 95% of any infrared radiation that hit it, meaning that the radiation warmed the photoresist layer but not the polymer beneath.

The researchers then used standard photolithography processes to create the microfluidic device. They placed a patterned mask over the sandwich and shone ultraviolet light to erode some areas of the photoresist; then, they etched away the exposed areas of metal beneath using a wash of chemicals. Stripping off any remaining photoresist left a clean metal pattern, which had features as small as 10 micrometers in width.

"If the surface finish is gold, our method can cut costs by more than 90%," says Huang. His team is now refining the process, and creating patterns of different metals with catalytic properties, which could speed up chemical reactions inside microfluidic devices.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Z.H. Huang, B.C. Lim, Z.F. Wang. Process development for high precision metal patterning on low glass transition polymer substrates. Microelectronic Engineering, 2012; 98: 528 DOI: 10.1016/j.mee.2012.07.053

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Microelectronics: Taking the heat off microfluidic chips." ScienceDaily. ScienceDaily, 24 April 2013. <www.sciencedaily.com/releases/2013/04/130424222321.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, April 24). Microelectronics: Taking the heat off microfluidic chips. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/04/130424222321.htm
The Agency for Science, Technology and Research (A*STAR). "Microelectronics: Taking the heat off microfluidic chips." ScienceDaily. www.sciencedaily.com/releases/2013/04/130424222321.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins