Featured Research

from universities, journals, and other organizations

How tetraplegic subject utilizes brain-machine interfaces to manipulate prosthetic arm, and regain and restore significant limb functionality

Date:
April 30, 2013
Source:
American Association of Neurological Surgeons (AANS)
Summary:
Researchers have presented impressive findings detailing how the use of brain-machine interfaces and robotic prosthetic arms may help those suffering from upper-limb paralysis or amputation regain the ability to grasp and manipulate objects.

Today during the 81st American Association of Neurological Surgeons (AANS) Annual Scientific Meeting, researchers presented impressive findings detailing how the use of brain-machine interfaces (BMI) and robotic prosthetic arms may help those suffering from upper-limb paralysis or amputation regain the ability to grasp and manipulate objects, and more actively interact with their environment to complete regular daily tasks.

Related Articles


Researchers implanted two 96-channel intracortical microelectrodes into the motor cortex of an individual with tetraplegia using multi-modality image guidance. Six months of BMI training were conducted with the goal being for the subject to control an anthropomorphic prosthetic limb with 10 degrees-of-freedom (3D translation, 3D orientation and 4D hand posture). Clinical measures of upper-limb function were used to assess the participant subject's ability to use the prosthetic limb. The results of this study, 10 degree-of-freedom neuroprosthetic control by an individual with tetraplegia, will be presented by Elizabeth C. Tyler-Kabara, MD, PhD, FAANS, on Tuesday, April 30. Co-authors are Jennifer Collinger, PhD; Brian Wodlinger, PhD; John Downey, BS; Wei Wang, PhD; Douglas Weber, PhD; Angus McMorland, PhD; Meel Velliste, PhD; Michael Boninger, MD; and Andrew Schwartz, PhD.

The subject in this study demonstrated the ability to move the prosthetic device freely in the three-dimensional (3D) workspace after just two days of training. Following 13 weeks of training and interaction, 7 degree-of-freedom movements were regularly performed, including 3D translation, 3D orientation and one-dimensional grasping. The researchers noted that performance of target-based reaching tasks improved over time in terms of success rate, completion time and path efficiency.

After six months, the subject exercised robust 10 degree-of freedom movements routinely in 3D translation, 3D orientation and fourth-dimension hand posture. The participant in the study also could use the prosthetic limb to perform a variety of skillful and coordinated reach and grasp movements, which resulted in in clinically significant gains in tests of upper-limb function. Researchers concluded that this study suggests that a person with chronic tetraplegia can perform consistent, natural, complex movements with an anthropomorphic robotic arm to regain clinically significant limb function.


Story Source:

The above story is based on materials provided by American Association of Neurological Surgeons (AANS). Note: Materials may be edited for content and length.


Cite This Page:

American Association of Neurological Surgeons (AANS). "How tetraplegic subject utilizes brain-machine interfaces to manipulate prosthetic arm, and regain and restore significant limb functionality." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430131117.htm>.
American Association of Neurological Surgeons (AANS). (2013, April 30). How tetraplegic subject utilizes brain-machine interfaces to manipulate prosthetic arm, and regain and restore significant limb functionality. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2013/04/130430131117.htm
American Association of Neurological Surgeons (AANS). "How tetraplegic subject utilizes brain-machine interfaces to manipulate prosthetic arm, and regain and restore significant limb functionality." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430131117.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins