Featured Research

from universities, journals, and other organizations

Making cancer less cancerous

Date:
May 2, 2013
Source:
Johns Hopkins Medicine
Summary:
Researchers have identified a gene that, when repressed in tumor cells, puts a halt to cell growth and a range of processes needed for tumors to enlarge and spread to distant sites. The researchers hope that this so-called “master regulator” gene may be the key to developing a new treatment for tumors resistant to current drugs.

Researchers at Johns Hopkins have identified a gene that, when repressed in tumor cells, puts a halt to cell growth and a range of processes needed for tumors to enlarge and spread to distant sites. The researchers hope that this so-called "master regulator" gene may be the key to developing a new treatment for tumors resistant to current drugs.

Related Articles


"This master regulator is normally turned off in adult cells, but it is very active during embryonic development and in all highly aggressive tumors studied to date," says Linda Resar, M.D., an associate professor of medicine, oncology and pediatrics, and affiliate in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. "Our work shows for the first time that switching this gene off in aggressive cancer cells dramatically changes their appearance and behavior." A description of the experiments appears in the May 2 issue of the journal PLOS ONE.

Resar has been investigating genes in the master regulator's family, known as high mobility group or HMG genes, for two decades. In addition to their role in cancer, these genes are essential for giving stem cells their special powers, and that's no coincidence, she says. "Many investigators consider cancer cells to be the evil twin of stem cells, because like stem cells, cancer cells must acquire special properties to enable the tumor to grow and metastasize or spread to different sites," she explains.

In a previous study , she and her team devised techniques to block the HMGA1 gene in stem cells in order to study its role in those cells. In their prior work, they discovered that HMGA1 is essential for reprogramming adult cells, like blood or skin cells, into stem cells that share most, if not all, properties of embryonic stem cells.

In the newly reported study, the Resar team applied the same techniques to several strains of human breast cancer cells in the laboratory, including the so-called triple negative cells -- those that lack hormone receptors or HER2 gene amplification. Triple-negative breast cancer cells tend to behave aggressively and do not respond to many of our most effective breast cancer therapies. The Resar team blocked HMGA1 expression in aggressive breast cancer cells and followed their appearance and growth patterns.

"The aggressive breast cancer cells grow rapidly and normally appear spindle-shaped or thin and elongated. Remarkably, within a few days of blocking HMGA1 expression, they appeared rounder and much more like normal breast cells growing in culture," says Resar. The team also found that the cells with suppressed HMGA1 grow very slowly and fail to migrate or invade new territory like their HMGA1-expressing cousins.

The team next implanted tumor cells into mice to see how the cells would behave. The tumors with HMGA1 grew and spread to other areas, such as the lungs, while those with blocked HMGA1 did not grow well in the breast tissue or spread to distant sites.

"From previous work, we know that HMGA1 turns on many different genes needed during very early development, but it's normally turned off by the time we're born," says postdoctoral fellow Sandeep Shah, Ph.D., who led the study. "Flipping that master regulator back on seems to be necessary for a cancer to become highly aggressive, and now we've seen that flipping HMGA1 off again can reverse that aggressive behavior."

The next step, Resar says, is to try to develop a therapy based on that principle. The team is working with other researchers at Johns Hopkins to see whether HMGA1-blocking molecules could be delivered to tumors inside nanoparticles. Another possible approach, she says, would be to block not HMGA1 itself, but one of the pathways or processes that it affects.

Other authors of the report were Leslie Cope, Weijie Poh, Amy Belton, Sujayita Roy, C. Conover Talbot, Jr., Saraswati Sukumar, and David L. Huso, all of The Johns Hopkins University School of Medicine.

This study was funded by the National Cancer Institute (grant number 5R21CA149550), the Maryland Stem Cell Research Fund, and the Safeway Breast Cancer Foundation.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shah SN, Cope L, Poh W, Belton A, Roy S, et al. HMGA1: A Master Regulator of Tumor Progression in Triple-Negative Breast Cancer Cells. PLoS ONE, 2013; 8(5): e63419 DOI: 10.1371/journal.pone.0063419

Cite This Page:

Johns Hopkins Medicine. "Making cancer less cancerous." ScienceDaily. ScienceDaily, 2 May 2013. <www.sciencedaily.com/releases/2013/05/130502185252.htm>.
Johns Hopkins Medicine. (2013, May 2). Making cancer less cancerous. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/05/130502185252.htm
Johns Hopkins Medicine. "Making cancer less cancerous." ScienceDaily. www.sciencedaily.com/releases/2013/05/130502185252.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins