Featured Research

from universities, journals, and other organizations

New cost-effective genome assembly process

Date:
May 5, 2013
Source:
DOE/Joint Genome Institute
Summary:
Genome assembly, the molecular equivalent of trying to put together a multi-million piece jigsaw puzzle without knowing what the picture on the cover of the box is, remains challenging due to the very large number of very small pieces, which must be assembled using current approaches. New research has resulted in an improved and fully automated workflow for genome assembly.

The U.S. Department of Energy Joint Genome Institute (DOE JGI) is among the world leaders in sequencing the genomes of microbes, focusing on their potential applications in the fields of bioenergy and environment. As a national user facility, the DOE JGI is also focused on developing tools that more cost-effectively enable the assembly and analysis of the sequence that it, as well as other genome centers, generates.

Despite tremendous advances in cost reduction and throughput of DNA sequencing, significant challenges remain in the process of efficiently reconstructing genomes. Existing technologies are good at cranking out short fragments (reads) of DNA letters that are computationally stitched back together (assembled) into longer pieces, so that the order of those letters can be determined and the function of the target sequence discerned. However, genome assembly, the equivalent of trying to put together a multi-million piece jigsaw puzzle without knowing what the picture on the cover of the box is, remains challenging due to the very large number of very small pieces, which must be assembled using current approaches.

As reported May 5 online in the journal Nature Methods, a collaboration between the DOE JGI, Pacific Biosciences (PacBio) and the University of Washington has resulted in an improved workflow for genome assembly that the team describes as "a fully automated process from DNA sample preparation to the determination of the finished genome."

The technique, known as HGAP (Hierarchical Genome Assembly Process), uses PacBio's single molecule, real-time DNA sequencing platform, which generates reads that can be up to tens of thousands of nucleotides long, even longer than those provided by the workhorse technology of the Human Genome Project era, the Sanger sequencing technology, which produced reads of about 700 nucleotides. The Sanger process involved creating multiple DNA libraries, conducting multiple runs, and combining the data, so that gaps in the code were covered and accuracies of a DNA base assignment were very high. Post-Sanger methods still typically require multiple libraries and often a mix of technologies to produce optimal results. Instead, with HGAP, "only a single, long-insert shotgun DNA library is prepared and subjected to automated continuous long-read SMRT sequencing, and the assembly is performed without the need for circular consensus sequencing," the team reported.

This de novo assembly method was tested using three microbes previously sequenced by the DOE JGI. The data collected were compared against the reference sequences for these microbes and the team found that the HGAP method produced final assemblies with >99.999% accuracy.

"We are always on the lookout for new approaches that will improve upon the efficient delivery of high-quality data to our growing community of researchers," said Len Pennacchio, DOE JGI's Deputy Director of Genomic Technologies. "This technique is one of many improvements that we are pursuing in parallel to achieve additional economies of scale."

The DOE JGI's sequencing efforts account for more than 20% of the more than 20,000 worldwide genome projects (microbes, plants, fungi, algae, and communities of microbes) completed or currently in the queue, and most of those are focused on the biology of environmental, energy, and carbon processing.

"We enjoyed a very productive collaboration with JGI on this project and benefited tremendously from the expertise of JGI's scientists in both the fields of microbiology and microbial genome assembly and annotation," said Jonas Korlach, Chief Scientific Officer at Pacific Biosciences. "This expertise provided us with the ability to adapt our single molecule sequencing assembly methods to produce a higher level of finished quality than was previously possible using a gold-standard Sanger finishing approach, and at a speed and price point competitive with alternative next generation sequencing and assembly methods. We look forward to seeing what scientific advances will be enabled by this method as JGI's User Community assesses JGI's capabilities to assemble their microbial genomes using this new approach."

The team will now seek to extend the utility of this new assembly method beyond microbes to the genomes of more complex organisms.


Story Source:

The above story is based on materials provided by DOE/Joint Genome Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E Eichler, Stephen W Turner, Jonas Korlach. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 2013; DOI: 10.1038/nmeth.2474

Cite This Page:

DOE/Joint Genome Institute. "New cost-effective genome assembly process." ScienceDaily. ScienceDaily, 5 May 2013. <www.sciencedaily.com/releases/2013/05/130505145933.htm>.
DOE/Joint Genome Institute. (2013, May 5). New cost-effective genome assembly process. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/05/130505145933.htm
DOE/Joint Genome Institute. "New cost-effective genome assembly process." ScienceDaily. www.sciencedaily.com/releases/2013/05/130505145933.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins