Featured Research

from universities, journals, and other organizations

More than a good eye: Robot uses arms, location and more to discover objects

Date:
May 6, 2013
Source:
Carnegie Mellon University
Summary:
A robot can struggle to discover objects in its surroundings when it relies on computer vision alone. But by taking advantage of all of the information available to it -- an object's location, size, shape and even whether it can be lifted -- a robot can continually discover and refine its understanding of objects, say researchers.

HERB, the robot butler, continually improves its understanding of objects.
Credit: Image courtesy of Carnegie Mellon University

A robot can struggle to discover objects in its surroundings when it relies on computer vision alone. But by taking advantage of all of the information available to it -- an object's location, size, shape and even whether it can be lifted -- a robot can continually discover and refine its understanding of objects, say researchers at Carnegie Mellon University's Robotics Institute.

The Lifelong Robotic Object Discovery (LROD) process developed by the research team enabled a two-armed, mobile robot to use color video, a Kinect depth camera and non-visual information to discover more than 100 objects in a home-like laboratory, including items such as computer monitors, plants and food items.

Normally, the CMU researchers build digital models and images of objects and load them into the memory of HERB -- the Home-Exploring Robot Butler -- so the robot can recognize objects that it needs to manipulate. Virtually all roboticists do something similar to help their robots recognize objects. With the team's implementation of LROD, called HerbDisc, the robot now can discover these objects on its own.

With more time and experience, HerbDisc gradually refines its models of the objects and begins to focus its attention on those that are most relevant to its goal -- helping people accomplish tasks of daily living.

Findings from the research study will be presented May 8 at the IEEE International Conference on Robotics and Automation in Karlsruhe, Germany.

The robot's ability to discover objects on its own sometimes takes even the researchers by surprise, said Siddhartha Srinivasa, associate professor of robotics and head of the Personal Robotics Lab, where HERB is being developed. In one case, some students left the remains of lunch -- a pineapple and a bag of bagels -- in the lab when they went home for the evening. The next morning, they returned to find that HERB had built digital models of both the pineapple and the bag and had figured out how it could pick up each one.

"We didn't even know that these objects existed, but HERB did," said Srinivasa, who jointly supervised the research with Martial Hebert, professor of robotics. "That was pretty fascinating."

Discovering and understanding objects in places filled with hundreds or thousands of things will be a crucial capability once robots begin working in the home and expanding their role in the workplace. Manually loading digital models of every object of possible relevance simply isn't feasible, Srinivasa said. "You can't expect Grandma to do all this," he added.

Object recognition has long been a challenging area of inquiry for computer vision researchers. Recognizing objects based on vision alone quickly becomes an intractable computational problem in a cluttered environment, Srinivasa said. But humans don't rely on sight alone to understand objects; babies will squeeze a rubber ducky, beat it against the tub, dunk it -- even stick it in their mouth. Robots, too, have a lot of "domain knowledge" about their environment that they can use to discover objects.

Taking advantage of all of HERB's senses required a research team with complementary expertise -- Srinivasa's insights on robotic manipulation and Hebert's in-depth knowledge of computer vision. Alvaro Collet, a robotics Ph.D. student they co-advised, led the development of HerbDisc. Collet is now a scientist at Microsoft.

Depth measurements from HERB's Kinect sensors proved to be particularly important, Hebert said, providing three-dimensional shape data that is highly discriminative for household items.

Other domain knowledge available to HERB includes location -- whether something is on a table, on the floor or in a cupboard. The robot can see whether a potential object moves on its own, or is moveable at all. It can note whether something is in a particular place at a particular time. And it can use its arms to see if it can lift the object -- the ultimate test of its "objectness."

"The first time HERB looks at the video, everything 'lights up' as a possible object," Srinivasa said. But as the robot uses its domain knowledge, it becomes clearer what is and isn't an object. The team found that adding domain knowledge to the video input almost tripled the number of objects HERB could discover and reduced computer processing time by a factor of 190. A HERB's-eye view of objects is available on YouTube.

HERB's definition of an object -- something it can lift -- is oriented toward its function as an assistive device for people, doing things such as fetching items or microwaving meals. "It's a very natural, robot-driven process," Srinivasa said. "As capabilities and situations change, different things become important." For instance, HERB can't yet pick up a sheet of paper, so it ignores paper. But once HERB has hands capable of manipulating paper, it will learn to recognize sheets of paper as objects.

Though not yet implemented, HERB and other robots could use the Internet to create an even richer understanding of objects. Earlier work by Srinivasa showed that robots can use crowdsourcing via Amazon Mechanical Turk to help understand objects. Likewise, a robot might access image sites, such as RoboEarth, ImageNet or 3D Warehouse, to find the name of an object, or to get images of parts of the object it can't see.

Bo Xiong, a student at Connecticut College, and Corina Gurau, a student at Jacobs University in Bremen, Germany, also contributed to this study.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "More than a good eye: Robot uses arms, location and more to discover objects." ScienceDaily. ScienceDaily, 6 May 2013. <www.sciencedaily.com/releases/2013/05/130506114003.htm>.
Carnegie Mellon University. (2013, May 6). More than a good eye: Robot uses arms, location and more to discover objects. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/05/130506114003.htm
Carnegie Mellon University. "More than a good eye: Robot uses arms, location and more to discover objects." ScienceDaily. www.sciencedaily.com/releases/2013/05/130506114003.htm (accessed April 23, 2014).

Share This



More Computers & Math News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins