Featured Research

from universities, journals, and other organizations

Terahertz technology: Seeing more with less

Date:
May 13, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Single-chip integration of the components needed for sending and receiving terahertz radiation should help applications in imaging and communication.

Terahertz radiation can penetrate materials such as a paper envelope and reveal the contents (left) in an accurate image (right).
Credit: 2013 A*STAR Institute of Microelectronics

Single-chip integration of the components needed for sending and receiving terahertz radiation should help applications in imaging and communication

Terahertz technology is an emerging field that promises to improve a host of useful applications, ranging from passenger scanning at airports to huge digital data transfers. Terahertz radiation sits between the frequency bands of microwaves and infrared radiation, and it can easily penetrate many materials, including biological tissue. The energy carried by terahertz radiation is low enough to pose no risk to the subject or object under investigation.

Before terahertz technology can take off on a large scale, however, developers need new kinds of devices that can send and receive radiation in this frequency range. Worldwide, electronic engineers are developing such devices. Now, Sanming Hu and co-workers from the A*STAR Institute of Microelectronics (IME), Singapore, have designed novel circuits and antennas for terahertz radiation and efficiently integrated these components into a transmitter-receiver unit on a single chip. Measuring just a few millimeters across, this area is substantially smaller than the size of current commercial devices. As such, it represents an important step towards the development of practical terahertz technologies.

Hu and his co-workers based their terahertz design on a fabrication technology known as BiCMOS, which enables full integration of devices on a single chip of only a few cubic millimeters in size. "Currently, commercial products for terahertz technologies use discrete modules that are assembled into a device," explains Hu. These module-based devices tend to be considerably more bulky than fully integrated systems.

"In a commercial terahertz transmitter-receiver unit, the central module alone measures typically around 190 by 80 by 65 millimeters, which is roughly 1 million cubic millimeters," says Hu. The novel design of Hu's team unites the essential components of a terahertz device in a smaller two-dimensional area of just a few millimeters along each side. According to Hu and his co-workers, this compact device paves the way towards the mass production of a fully integrated terahertz system.

As the next step, the team will use the IME's cutting-edge technologies to build more complex structures composed of several two-dimensional layers, which will be based on their new designs. Although the team is not pursuing any specific applications, their devices potentially open up a wide range of possibilities. These include wireless short-range transfers of data sets -- the content of a Blu-ray disc could be sent in as little as a few seconds, for example -- high-resolution biosensing, risk-free screening of patients and passengers, and see-through-envelope imaging (see image).


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sanming Hu, Yong-Zhong Xiong, Bo Zhang, Lei Wang, Teck-Guan Lim, Minkyu Je, Mohammad Madihian. A SiGe BiCMOS Transmitter/Receiver Chipset With On-Chip SIW Antennas for Terahertz Applications. IEEE Journal of Solid-State Circuits, 2012; 47 (11): 2654 DOI: 10.1109/JSSC.2012.2211658

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Terahertz technology: Seeing more with less." ScienceDaily. ScienceDaily, 13 May 2013. <www.sciencedaily.com/releases/2013/05/130513115000.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, May 13). Terahertz technology: Seeing more with less. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/05/130513115000.htm
The Agency for Science, Technology and Research (A*STAR). "Terahertz technology: Seeing more with less." ScienceDaily. www.sciencedaily.com/releases/2013/05/130513115000.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins