Featured Research

from universities, journals, and other organizations

Clear photos in dim light: New sensor a thousand times more sensitive than current camera sensors

Date:
May 30, 2013
Source:
Nanyang Technological University
Summary:
Cameras fitted with a new revolutionary sensor will soon be able to take clear and sharp photos in dim conditions, thanks to a new image sensor.

NTU Asst Prof Wang Qijie, 34, and lead author PhD student Liu Tao, 29, looking at their newly designed nanostructured graphene
Credit: Image courtesy of Nanyang Technological University

Cameras fitted with a new revolutionary sensor will soon be able to take clear and sharp photos in dim conditions, thanks to a new image sensor invented at Nanyang Technological University (NTU).

The new sensor made from graphene, is believed to be the first to be able to detect broad spectrum light, from the visible to mid-infrared, with high photoresponse or sensitivity. This means it is suitable for use in all types of cameras, including infrared cameras, traffic speed cameras, satellite imaging and more.

Not only is the graphene sensor 1,000 times more sensitive to light than current imaging sensors found in today's cameras, it also uses 10 times less energy as it operates at lower voltages. When mass produced, graphene sensors are estimated to cost at least five times cheaper.

Graphene is a million times smaller than the thickest human hair (only one-atom thick) and is made of pure carbon atoms arranged in a honeycomb structure. It is known to have a high electrical conductivity among other properties such as durability and flexibility.

The inventor of the graphene sensor, Assistant Professor Wang Qijie, from NTU's School of Electrical & Electronic Engineering, said it is believed to be the first time that a broad-spectrum, high photosensitive sensor has been developed using pure graphene.

His breakthrough, made by fabricating a graphene sheet into novel nano structures, was published this month in Nature Communications, a highly-rated research journal.

"We have shown that it is now possible to create cheap, sensitive and flexible photo sensors from graphene alone. We expect our innovation will have great impact not only on the consumer imaging industry, but also in satellite imaging and communication industries, as well as the mid-infrared applications," said Asst Prof Wang, who also holds a joint appointment in NTU's School of Physical and Mathematical Sciences.

"While designing this sensor, we have kept current manufacturing practices in mind. This means the industry can in principle continue producing camera sensors using the CMOS (complementary metal-oxide-semiconductor) process, which is the prevailing technology used by the majority of factories in the electronics industry. Therefore manufacturers can easily replace the current base material of photo sensors with our new nano-structured graphene material."

If adopted by industry, Asst Prof Wang expects that cost of manufacturing imaging sensors to fall -- eventually leading to cheaper cameras with longer battery life.

How the Graphene nanostructure works

Asst Prof Wang came up with an innovative idea to create nanostructures on graphene which will "trap" light-generated electron particles for a much longer time, resulting in a much stronger electric signal. Such electric signals can then be processed into an image, such as a photograph captured by a digital camera.

The "trapped electrons" is the key to achieving high photoresponse in graphene, which makes it far more effective than the normal CMOS or CCD (charge-coupled device) image sensors, said Asst Prof Wang. Essentially, the stronger the electric signals generated, the clearer and sharper the photos.

"The performance of our graphene sensor can be further improved, such as the response speed, through nanostructure engineering of graphene, and preliminary results already verified the feasibility of our concept," Asst Prof Wang added.

This research, costing about $200,000, is funded by the Nanyang Assistant Professorship start-up grant and supported partially by the Ministry of Education Tier 2 and 3 research grants.

Development of this sensor took Asst Prof Wang a total of 2 years to complete. His team consisted of two research fellows, Dr Zhang Yongzhe and Dr Li Xiaohui, and four doctoral students Liu Tao, Meng Bo, Liang Guozhen and Hu Xiaonan, from EEE, NTU. Two undergraduate students were also involved in this ground-breaking work.

Asst Prof Wang has filed a patent through NTU's Nanyang Innovation and Enterprise Office for his invention.

The next step is to work with industry collaborators to develop the graphene sensor into a commercial product.


Story Source:

The above story is based on materials provided by Nanyang Technological University. Note: Materials may be edited for content and length.


Journal Reference:

  1. By Yongzhe Zhang, Tao Liu, Bo Meng, Xiaohui Li, Guozhen Liang, Xiaonan Hu, Qi Jie Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013; 4: 1811 DOI: 10.1038/ncomms2830

Cite This Page:

Nanyang Technological University. "Clear photos in dim light: New sensor a thousand times more sensitive than current camera sensors." ScienceDaily. ScienceDaily, 30 May 2013. <www.sciencedaily.com/releases/2013/05/130530094624.htm>.
Nanyang Technological University. (2013, May 30). Clear photos in dim light: New sensor a thousand times more sensitive than current camera sensors. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/05/130530094624.htm
Nanyang Technological University. "Clear photos in dim light: New sensor a thousand times more sensitive than current camera sensors." ScienceDaily. www.sciencedaily.com/releases/2013/05/130530094624.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins