Featured Research

from universities, journals, and other organizations

New mathematical model links space-time theories

Date:
May 30, 2013
Source:
University of Southampton
Summary:
Researchers have taken a significant step in a project to unravel the secrets of the structure of our Universe.

The attached image shows a 'black string' black hole phenomenon with perturbation.
Credit: University of Southampton

Researchers at the University of Southampton have taken a significant step in a project to unravel the secrets of the structure of our Universe.

Related Articles


Professor Kostas Skenderis, Chair in Mathematical Physics at the University, comments: "One of the main recent advances in theoretical physics is the holographic principle. According to this idea, our Universe may be thought of as a hologram and we would like to understand how to formulate the laws of physics for such a holographic Universe."

A new paper released by Professor Skenderis and Dr Marco Caldarelli from the University of Southampton, Dr Joan Camps from the University of Cambridge and Dr Blaise Goutιraux from the Nordic Institute for Theoretical Physics, Sweden published in the Rapid Communication section of 'Physical Review D', makes connections between negatively curved space-time and flat space-time.

Space-time is usually understood to describe space existing in three dimensions, with time playing the role of a fourth dimension and all four coming together to form a continuum, or a state in which the four elements can't be distinguished from each other.

Flat space-time and negative space-time describe an environment in which the Universe is non-compact, with space extending infinitely, forever in time, in any direction. The gravitational forces, such as the ones produced by a star, are best described by flat-space time. Negatively curved space-time describes a Universe filled with negative vacuum energy. The mathematics of holography is best understood for negatively curved space-times.

Professor Skenderis has developed a mathematic model which finds striking similarities between flat space-time and negatively curved space-time, with the latter however formulated in a negative number of dimensions, beyond our realm of physical perception.

He comments: "According to holography, at a fundamental level the universe has one less dimension than we perceive in everyday life and is governed by laws similar to electromagnetism. The idea is similar to that of ordinary holograms where a three-dimensional image is encoded in a two-dimensional surface, such as in the hologram on a credit card, but now it is the entire Universe that is encoded in such a fashion.

"Our research is ongoing, and we hope to find more connections between flat space-time, negatively curved space-time and holography. Traditional theories about how the Universe operates go some way individually to describing its very nature, but each fall short in different areas. It is our ultimate goal to find a new combined understanding of the Universe, which works across the board."

The paper AdS/Ricci-flat correspondence and the Gregory-Laflamme instability specifically explains what is known as the Gregory Laflamme instability, where certain types of black hole break up into smaller black holes when disturbed -- rather like a thin stream of water breaking into little droplets when you touch it with your finger. This black hole phenomenon has previously been shown to exist through computer simulations and this work provides a deeper theoretical explanation.

In October 2012, Professor Skenderis was named among 20 other prominent scientists around the world to receive an award from the New Frontiers in Astronomy and Cosmology international grant competition. He received $175,000 to explore the question, 'Was there a beginning of time and space?''.

The detailed paper AdS/Ricci-flat correspondence and the Gregory-Laflamme instability can be found here:


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marco M. Caldarelli, Joan Camps, Blaise Goutιraux, Kostas Skenderis. AdS/Ricci-flat correspondence and the Gregory-Laflamme instability. Physical Review D, 2013; 87 (6) DOI: 10.1103/PhysRevD.87.061502

Cite This Page:

University of Southampton. "New mathematical model links space-time theories." ScienceDaily. ScienceDaily, 30 May 2013. <www.sciencedaily.com/releases/2013/05/130530094633.htm>.
University of Southampton. (2013, May 30). New mathematical model links space-time theories. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/05/130530094633.htm
University of Southampton. "New mathematical model links space-time theories." ScienceDaily. www.sciencedaily.com/releases/2013/05/130530094633.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Space & Time News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) — The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) — The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Supermassive Blackhole Detector Ready for Business

Supermassive Blackhole Detector Ready for Business

Reuters - Innovations Video Online (Mar. 25, 2015) — Construction of the world&apos;s largest and most powerful observatory designed to detect and analyze gamma rays has been completed in Mexico. Gamma ray particles are considered the most energetic in the universe and scientists hope to use the observatory to learn more about the supernovas and black holes that produce them. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Rocket Blasts Off Carrying U.S. Air Force GPS Satellite

Rocket Blasts Off Carrying U.S. Air Force GPS Satellite

Reuters - News Video Online (Mar. 25, 2015) — A U.S. Air Force GPS IIF-9 satellite launches aboard a United Launch Alliance Delta IV rocket into semi-synchronous orbit. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins