Featured Research

from universities, journals, and other organizations

The diabetes 'breathalyzer'

Date:
June 10, 2013
Source:
University of Pittsburgh
Summary:
Chemists have demonstrated a sensor technology that could significantly simplify the diagnosis and monitoring of diabetes through breath analysis alone.

A transmission electron microscopy image of the hybrid material revealing the formation of “titanium dioxide on a stick.”
Credit: Image courtesy of University of Pittsburgh

Diabetes patients often receive their diagnosis after a series of glucose-related blood tests in hospital settings, and then have to monitor their condition daily through expensive, invasive methods. But what if diabetes could be diagnosed and monitored through cheaper, noninvasive methods?A transmission electron microscopy image of the hybrid material revealing the formation of "titanium dioxide on a stick."

Chemists at the University of Pittsburgh have demonstrated a sensor technology that could significantly simplify the diagnosis and monitoring of diabetes through breath analysis alone. Their findings were published in the latest issue of the Journal of the American Chemical Society (JACS).

Even before blood tests are administered, those with diabetes often recognize the condition's symptoms through their breath acetone -- a characteristic "fruity" odor that increases significantly with high glucose levels. The Pitt team was interested in this biomarker as a possible diagnostic tool.

"Once patients are diagnosed with diabetes, they have to monitor their condition for the rest of their lives," said Alexander Star, principal investigator of the project and Pitt associate professor of chemistry. "Current monitoring devices are mostly based on blood glucose analysis, so the development of alternative devices that are noninvasive, inexpensive, and provide easy-to-use breath analysis could completely change the paradigm of self-monitoring diabetes."

Together with his colleagues -- Dan Sorescu, a research physicist at the National Energy Technology Laboratory, and Mengning Ding, a Pitt graduate student studying chemistry -- Star used what's called a "sol-gel approach," a method for using small molecules (often on a nanoscale level) to produce solid materials. The team combined titanium dioxide -- an inorganic compound widely used in body-care products such as makeup -- with carbon nanotubes, which acted as "skewers" to hold the particles together. These nanotubes were used because they are stronger than steel and smaller than any element of silicon-based electronics.

This method, which the researchers playfully call "titanium dioxide on a stick," effectively combined the electrical properties of the tubes with the light-illuminating powers of the titanium dioxide. They then created the sensor device by using these materials as an electrical semiconductor, measuring its electrical resistance (the sensor's signal).

The researchers found the sensor could be activated with light to produce an electrical charge. This prompted them to "cook" the "skewers" in the sensor under ultraviolet light to measure acetone vapors -- which they found were lower than previously reported sensitivities.

"Our measurements have excellent detection capabilities," said Star. "If such a sensor could be developed and commercialized, it could transform the way patients with diabetes monitor their glucose levels."

The team is currently working on a prototype of the sensor, with plans to test it on human breath samples soon.

The paper, "Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids," was first published in JACS online June 5. The work was performed in support of ongoing research at the National Energy Technology Laboratory.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mengning Ding, Dan C. Sorescu, Alexander Star. Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube–Titanium Dioxide Hybrids. Journal of the American Chemical Society, 2013; 130605071201003 DOI: 10.1021/ja402887v

Cite This Page:

University of Pittsburgh. "The diabetes 'breathalyzer'." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610133125.htm>.
University of Pittsburgh. (2013, June 10). The diabetes 'breathalyzer'. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/06/130610133125.htm
University of Pittsburgh. "The diabetes 'breathalyzer'." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610133125.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins