Featured Research

from universities, journals, and other organizations

Less friction loss in combustion engines

Date:
June 11, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
Researchers have developed a method that can reduce engine friction and wear even during production of engine components. Special coatings can help to reduce fuel consumption and carbon dioxide emissions.

Precision boring of cylinder running surfaces rely on defined cuts with a specific geometry. Thus, surfaces of a very high quality can be created.
Credit: Fraunhofer IWU

Researchers have developed a method that can reduce engine friction and wear even during production of engine components. Special coatings can help to reduce fuel consumption and CO2 emissions.

Related Articles


If a new car engine is to run "smoothly," first it has to be properly run in: drivers should avoid quick acceleration and permanent short trips during the first 1000 kilometers, for instance. Why is this "grace period" necessary at all? When an engine is being run in, the peripheral zone on the articulations -- the components in mechanical contact with one another -- changes as a result of friction: the surface itself becomes "smoother," and the granularity of the microstructure becomes finer at a material depth of roughly 500 to 1000 nanometers (nm), creating a nanocrystalline layer.

Quite a bit of friction has taken place, though, by the time this nano scale layer has formed. That is why, even now, a large share of the energy is lost to friction during the phase in which an engine is run in. Surface running properties are also a function of the customer's behavior during the running-in phase. A critical topic for the automotive industry: against the backdrop of increasingly scarce resources and the need to reduce CO2 emissions, reductions of friction loss has top priority on the development agenda.

More precision through optimized production technologies

Within the scope of the "TRIBOMAN" project, researchers at five Fraunhofer Institutes are working to develop production methods and processes to improve combustion engines' tribological (meaning friction-related) performance. The focus is on components exposed to particularly high levels of friction, such as the running surfaces of engine cylinders. "Our common approach is to move the process of forming marginalized layers to an earlier stage in production," explains Torsten Schmidt from the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz.

Schmidt and his team have developed optimized production technologies for precision finishing in this connection. "For precision drilling of running surfaces on cylinders, we use defined cutting edges with a specific design. This results in very high surface quality," Schmidt adds. "We also systematically use the force of the machining process to promote ‚grain refinement' -- meaning the hardening of the materials -- even during production."

The new process is designed to improve the influence on friction and wear in engine components in the future -- taking the automotive industry a significant step closer to achieve the goal of using energy more efficiently and reducing CO2 emissions. But customers stand to benefit as well: these new advancements would considerably shorten the running-in period for new engines. Besides improvements in comfort, it also reduces the risk of premature wear as a result of running in a new engine.

Using a single cylinder test engine with cylinder running surfaces of aluminum, researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg have already documented the first positive results of this kind of modified finishing: analyses of the processed cylinder surfaces showed a significantly lower grain size compared to conventional methods. The surface microgeometry is comparable to the cylinder running surfaces of well-run-in cylinders. Researchers are currently working to adapt their method to new development trends in automobile manufacturing such as the introduction of biofuels: since the ethanol content of biofuels is higher, aluminum components are now usually fitted with a coating layer to protect them from corrosion more effectively.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Less friction loss in combustion engines." ScienceDaily. ScienceDaily, 11 June 2013. <www.sciencedaily.com/releases/2013/06/130611084201.htm>.
Fraunhofer-Gesellschaft. (2013, June 11). Less friction loss in combustion engines. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/06/130611084201.htm
Fraunhofer-Gesellschaft. "Less friction loss in combustion engines." ScienceDaily. www.sciencedaily.com/releases/2013/06/130611084201.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins