Featured Research

from universities, journals, and other organizations

Programming model for supercomputers of the future

Date:
June 25, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
The demand for even faster, more effective, and also energy-saving computer clusters is growing in every sector. The new asynchronous programming model GPI from Fraunhofer ITWM might become a key building block towards realizing the next generation of supercomputers.

Dr. Carsten Lojewski, Dr. Christian Simmendinger, Rui Machado (from left to right) developed a programming model that uses high- performance computers as efficiently as possible.
Credit: Dirk Mahler/Fraunhofer

The demand for even faster, more effective, and also energy-saving computer clusters is growing in every sector. The new asynchronous programming model GPI from Fraunhofer ITWM might become a key building block towards realizing the next generation of supercomputers.

High-performance computing is one of the key technologies for numerous applications that we have come to take for granted -- everything from Google searches to weather forecasting and climate simulation to bioinformatics requires an ever increasing amount of computing ressources. Big data analysis additionally is driving the demand for even faster, more effective, and also energy-saving computer clusters. The number of processors per system has now reached the millions and looks set to grow even faster in the future. Yet something has remained largely unchanged over the past 20 years and that is the programming model for these supercomputers. The Message Passing Interface (MPI) ensures that the microprocessors in the distributed systems can communicate. For some time now, however, it has been reaching the limits of its capability.

"I was trying to solve a calculation and simulation problem related to seismic data," says Dr. Carsten Lojewski from the Fraunhofer Institute for Industrial Mathematics ITWM. "But existing methods weren't working. The problems were a lack of scalability, the restriction to bulk-synchronous, two-sided communication, and the lack of fault tolerance. So out of my own curiosity I began to develop a new programming model." This development work ultimately resulted in the Global Address Space Programming Interface -- or GPI -- which uses the parallel architecture of high-performance computers with maximum efficiency.

GPI is based on a completely new approach: an asynchronous communication model, which is based on remote completion. With this approach, each processor can directly access all data -- regardless of which memory it is on and without affecting other parallel processes. Together with Rui Machado, also from Fraunhofer ITWM, and Dr. Christian Simmendinger from T-Systems Solutions for Research, Dr. Carsten Lojewski is receiving a Joseph von Fraunhofer prize this year.

Like the programming model of MPI, GPI was not developed as a parallel programming language, but as a parallel programming interface, which means it can be used universally. The demand for such a scalable, flexible, and fault-tolerant interface is large and growing, especially given the exponential growth in the number of processors in supercomputers.

Initial sample implementations of GPI have worked very successfully: "High-performance computing has become a universal tool in science and business, a fixed part of the design process in fields such as automotive and aircraft manufacturing," says Dr. Christian Simmendinger. "Take the example of aerodynamics: one of the simulation cornerstones in the European aerospace sector, the software TAU, was ported to the GPI platform in a project with the German Aerospace Center (DLR). GPI allowed us to significantly increase parallel efficiency."

Even though GPI is a tool for specialists, it has the potential to revolutionize algorithmic development for high-performance software. It is considered a key component in enabling the next generation of supercomputers -- exascale computers, which are 1,000 times faster than the mainframes of today.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Programming model for supercomputers of the future." ScienceDaily. ScienceDaily, 25 June 2013. <www.sciencedaily.com/releases/2013/06/130625073557.htm>.
Fraunhofer-Gesellschaft. (2013, June 25). Programming model for supercomputers of the future. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/06/130625073557.htm
Fraunhofer-Gesellschaft. "Programming model for supercomputers of the future." ScienceDaily. www.sciencedaily.com/releases/2013/06/130625073557.htm (accessed September 22, 2014).

Share This



More Computers & Math News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
Oculus Reveals New Virtual Reality Headset Prototype

Oculus Reveals New Virtual Reality Headset Prototype

Newsy (Sep. 20, 2014) Oculus announced a new virtual reality headset prototype Saturday, saying the product is close to being ready for consumers. Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins