Featured Research

from universities, journals, and other organizations

New laser shows what substances are made of; could be new eyes for military

Date:
June 25, 2013
Source:
University of Michigan
Summary:
A new laser that can show what objects are made of could help military aircraft identify hidden dangers such as weapons arsenals far below.

Joseph Meola of Air Force Research Labs conducting measurements on laser light bounced back from various samples placed 1.6 kilometers on the ground from a prototype laser at Wright Patterson Air Force Base.
Credit: Anthony Absi, Air Force Research Labs

A new laser that can show what objects are made of could help military aircraft identify hidden dangers such as weapons arsenals far below.

"For the defense and intelligence communities, this could add a new set of eyes," said Mohammed Islam, a professor of electrical engineering and computer science and biomedical engineering at the University of Michigan.

The system, which is made of off-the-shelf telecommunications technology, emits a broadband beam of infrared light. While most lasers emit light of one wavelength, or color, super-continuum lasers like this one give off a tight beam packed with columns of light covering a range of wavelengths -- a blend of colors. Because this beam is in the infrared region, it's invisible to human eyes. But it can illuminate deep information.

The infrared contains what scientists refer to as the "spectral fingerprinting range" -- frequencies at which they can detect echoes of the vibrations of the molecules that make up a solid substance. A substance's spectral fingerprint reveals which wavelengths of light it absorbed, and which it reflected. Different substances absorb and reflect different wavelengths. So by shining the new laser on a target and analyzing the reflected light, the researchers can tell the chemical composition of the target.

"A grey structure looks grey in visible light, but in the infrared, you can see not only the shape, but also what's inside it," Islam said.

The military uses spectral fingerprinting to identify targets today to a certain extent, Islam said. But it relies on the sun for the light, which can be a problem on a cloudy day or at night.

While broadband infrared lasers do exist, this one is more powerful, Islam said. His team tested a 5-watt prototype. They've built a 25.7 watt version. And they're now working on a 50-watt prototype, which is scheduled to be field tested later this year.

These higher power lasers could give an aircraft flying at higher altitudes the capacity to illuminate a region with a brightness comparable to sunlight, and then image that region. Many chemical sensors in use today work at close range, but few, if any, can do the job from a long distance.

Beyond military applications, this device has the potential to improve upon today's full-body airport screening technologies.

"Those are imaging devices looking for bumps where there shouldn't be bumps," Islam said. "They're looking for shapes that are odd or different. But they can't see the chemicals in the shapes. That's why you have to take your shoes off. But our laser can detect the chemical composition."

The researchers were able to build the laser using their patented approach that uses off-the-shelf telecom fiber optic technology and takes advantage of the natural physics of the fiber to generate the light.

In 2012, the team spent a week at Wright Patterson Air Force Base field testing a 5-watt prototype. Scientists and engineers from these entities attended: the Air Force Research Labs, SAIC, U-M spinout company Omni Sciences, and U-M. They placed the laser in a 12-story tower and directed its beam to targets approximately a mile away on a runway. Various laboratory instruments and scientific cameras were used to verify the beam quality and signal level.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vinay V. Alexander, Zhennan Shi, Mohammed N. Islam, Kevin Ke, Michael J. Freeman, Agustin Ifarraguerri, Joseph Meola, Anthony Absi, James Leonard, Jerome Zadnik, Anthony S. Szalkowski, Gregory J. Boer. Power scalable >25 W supercontinuum laser from 2 to 25 μm with near-diffraction-limited beam and low output variability. Optics Letters, 2013; 38 (13): 2292 DOI: 10.1364/OL.38.002292

Cite This Page:

University of Michigan. "New laser shows what substances are made of; could be new eyes for military." ScienceDaily. ScienceDaily, 25 June 2013. <www.sciencedaily.com/releases/2013/06/130625121241.htm>.
University of Michigan. (2013, June 25). New laser shows what substances are made of; could be new eyes for military. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/06/130625121241.htm
University of Michigan. "New laser shows what substances are made of; could be new eyes for military." ScienceDaily. www.sciencedaily.com/releases/2013/06/130625121241.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins