Featured Research

from universities, journals, and other organizations

Astronomers spy on galaxies in the raw

Date:
June 26, 2013
Source:
CSIRO Australia
Summary:
A radio telescope has detected the raw material for making the first stars in galaxies that formed when the Universe was just three billion years old -- less than a quarter of its current age.

In blue, the carbon monoxide gas detected in and around the Spiderweb.
Credit: Credit: B. Emonts et al (CSIRO/ATCA)

A CSIRO radio telescope has detected the raw material for making the first stars in galaxies that formed when the Universe was just three billion years old -- less than a quarter of its current age. This opens the way to studying how these early galaxies make their first stars.

The telescope is CSIRO's Australia Telescope Compact Array telescope near Narrabri, NSW. "It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths," says CSIRO astronomer Professor Ron Ekers.

The raw material for making stars is cold molecular hydrogen gas, H2. It can't be detected directly but its presence is revealed by a 'tracer' gas, carbon monoxide (CO), which emits radio waves.

In one project, astronomer Dr Bjorn Emonts (CSIRO Astronomy and Space Science) and his colleagues used the Compact Array to study a massive, distant conglomerate of star-forming 'clumps' or 'proto-galaxies' that are in the process of coming together as a single massive galaxy. This structure, called the Spiderweb, lies more than ten thousand million light-years away [at a redshift of 2.16].

CSIRO's Compact Array radio telescope can detect star formation, helping to answer fundamental questions about how early galaxies started forming stars.

Dr Emonts' team found that the Spiderweb contains at least sixty thousand million [6 x 1010] times the mass of the Sun in molecular hydrogen gas, spread over a distance of almost a quarter of a million light-years. This must be the fuel for the star-formation that has been seen across the Spiderweb. "Indeed, it is enough to keep stars forming for at least another 40 million years," says Emonts.

In a second set of studies, Dr Manuel Aravena (European Southern Observatory) and colleagues measured CO, and therefore H2, in two very distant galaxies [at a redshift of 2.7].

The faint radio waves from these galaxies were amplified by the gravitational fields of other galaxies -- ones that lie between us and the distant galaxies. This process, called gravitational lensing, "acts like a magnifying lens and allows us to see even more distant objects than the Spiderweb," says Dr Aravena.

Dr Aravena's team was able to measure the amount of H2 in both galaxies they studied. For one (called SPT-S 053816-5030.8), they could also use the radio emission to make an estimate of how rapidly the galaxy is forming stars -- an estimate independent of the other ways astronomers measure this rate.

The Compact Array's ability to detect CO is due to an upgrade that has boosted its bandwidth -- the amount of radio spectrum it can see at any one time -- sixteen-fold [from 256 MHz to 4 GHz], and made it far more sensitive.

"The Compact Array complements the new ALMA telescope in Chile, which looks for the higher-frequency transitions of CO," says Ron Ekers.


Story Source:

The above story is based on materials provided by CSIRO Australia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emonts BHC et al. CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z=2).. Monthly Notices of the Royal Astronomical Society, 430, 3465 (2013) [link]

Cite This Page:

CSIRO Australia. "Astronomers spy on galaxies in the raw." ScienceDaily. ScienceDaily, 26 June 2013. <www.sciencedaily.com/releases/2013/06/130626113656.htm>.
CSIRO Australia. (2013, June 26). Astronomers spy on galaxies in the raw. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/06/130626113656.htm
CSIRO Australia. "Astronomers spy on galaxies in the raw." ScienceDaily. www.sciencedaily.com/releases/2013/06/130626113656.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins