Featured Research

from universities, journals, and other organizations

Tiny nanocubes help scientists tell left from right

Date:
June 28, 2013
Source:
Brookhaven National Laboratory
Summary:
A team of scientists has developed a new, simpler way to discern molecular handedness, known as chirality, which could improve drug development, optical sensors and more.

Electron microscopy "maps" of octahedral gold nanoparticles surrounded by cubic silver shells. Attaching a biomolecule (e.g., DNA) to these nanoparticles strengthens a signal representing a difference between left- and right-handed molecules' response to light by 100 times, and pushes it toward the visible range of the electromagnetic spectrum.
Credit: Image courtesy of Brookhaven National Laboratory

In chemical reactions, left and right can make a big difference. A "left-handed" molecule of a particular chemical composition could be an effective drug, while its mirror-image "right-handed" counterpart could be completely inactive. That's because, in biology, "left" and "right" molecular designs are crucial: Living organisms are made only from left-handed amino acids. So telling the two apart is important-but difficult.

Related Articles


Now, a team of scientists at the U.S. Department of Energy's Brookhaven National Laboratory and Ohio University has developed a new, simpler way to discern molecular handedness, known as chirality. They used gold-and-silver cubic nanoparticles to amplify the difference in left- and right-handed molecules' response to a particular kind of light. The study, described in the journal Nano Letters, provides the basis for a new way to probe the effects of handedness in molecular interactions with unprecedented sensitivity.

"Our discovery and methods based on this research could be extremely useful for the characterization of biomolecular interactions with drugs, probing protein folding, and in other applications where stereometric properties are important," said Oleg Gang, a researcher at Brookhaven's Center for Functional Nanomaterials and lead author on the paper. "We could use this same approach to monitor conformational changes in biomolecules under varying environmental conditions, such as temperature-and also to fabricate nano-objects that exhibit a chiral response to light, which could then be used as new kinds of nanoscale sensors."

The scientists knew that left- and right-handed chiral molecules would interact differently with "circularly polarized" light-where the direction of the electrical field rotates around the axis of the beam. This idea is similar to the way polarized sunglasses filter out reflected glare unlike ordinary lenses.

Other scientists have detected this difference, called "circular dichroism," in organic molecules' spectroscopic "fingerprints"-detailed maps of the wavelengths of light absorbed or reflected by the sample. But for most chiral biomolecules and many organic molecules, this "CD" signal is in the ultraviolet range of the electromagnetic spectrum, and the signal is often weak. The tests thus require significant amounts of material at impractically high concentrations.

The team was encouraged they might find a way to enhance the signal by recent experiments showing that coupling certain molecules with metallic nanoparticles could greatly increase their response to light (see: http://www.bnl.gov/newsroom/news.php?a=11157). Theoretical work even suggested that these so-called plasmonic particles-which induce a collective oscillation of the material's conductive electrons, leading to stronger absorption of a particular wavelength-could bump the signal into the visible light portion of the spectroscopic fingerprint, where it would be easier to measure.

The group experimented with different shapes and compositions of nanoparticles, and found that cubes with a gold center surrounded by a silver shell are not only able to show a chiral optical signal in the near-visible range, but even more striking, were effective signal amplifiers. For their test biomolecule, they used synthetic strands of DNA-a molecule they were familiar with using as "glue" for sticking nanoparticles together.

When DNA was attached to the silver-coated nanocubes, the signal was approximately 100 times stronger than it was for free DNA in the solution. That is, the cubic nanoparticles allowed the scientists to detect the optical signal from the chiral molecules (making them "visible") at 100 times lower concentrations.

"This is a very large optical amplification relative to what was previously observed," said Fang Lu, the first author on the paper.

The observed amplification of the circular dichroism signal is a consequence of the interaction between the plasmonic particles and the "exciton," or energy absorbing, electrons within the DNA-nanocube complex, the scientists explained.

"This research could serve as a promising platform for ultrasensitive sensing of chiral molecules and their transformations in synthetic, biomedical, and pharmaceutical applications," Lu said.

"In addition," said Gang, "our approach offers a way to fabricate, via self-assembly, discrete plasmonic nano-objects with a chiral optical response from structurally non-chiral nano-components. These chiral plasmonic objects could greatly enhance the design of metamaterials and nano-optics for applications in energy harvesting and optical telecommunications."

This research was conducted at the Center for Functional Nanomaterials and funded by the DOE Office of Science and by the National Science Foundation.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fang Lu, Ye Tian, Mingzhao Liu, Dong Su, Hui Zhang, Alexander O. Govorov, Oleg Gang. Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality. Nano Letters, 2013; 130626093826000 DOI: 10.1021/nl401107g

Cite This Page:

Brookhaven National Laboratory. "Tiny nanocubes help scientists tell left from right." ScienceDaily. ScienceDaily, 28 June 2013. <www.sciencedaily.com/releases/2013/06/130628102933.htm>.
Brookhaven National Laboratory. (2013, June 28). Tiny nanocubes help scientists tell left from right. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/06/130628102933.htm
Brookhaven National Laboratory. "Tiny nanocubes help scientists tell left from right." ScienceDaily. www.sciencedaily.com/releases/2013/06/130628102933.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins