Featured Research

from universities, journals, and other organizations

Genomes of cholera bacteria from Haiti confirm epidemic originated from single source

Date:
July 2, 2013
Source:
American Society for Microbiology
Summary:
The strain of cholera that has sickened thousands in Haiti came from a single source and was not repeatedly introduced to the island over the past three years as some have thought, according to a new study.

The strain of cholera that has sickened thousands in Haiti came from a single source and was not repeatedly introduced to the island over the past three years as some have thought, according to a new study published in mBioฎ, the online open-access journal of the American Society for Microbiology.

Related Articles


The results of this latest study are consistent with earlier findings that indicate Vibrio cholerae bacteria were introduced to Haiti by United nations soldiers between July and October 2010, when Nepalese soldiers arrived to assist recovery efforts after the January 2010 earthquake in that country. The genome sequences of V. cholerae strains from Haiti reveal they have not gained any new genetic material since their introduction and that they have a limited ability to acquire genes from other organisms through a process called transformation.

This new information may help public health authorities understand future cholera outbreaks in Haiti and elsewhere, according to the authors. "The use of high resolution sequence data that is amenable to evolutionary analysis will greatly enhance our ability to discern transmission pathways of virulent clones such as the one implicated in this epidemic," write the authors.

The earthquake in January 2010 killed tens of thousands of Haitians, and it was followed several months later by an outbreak of cholera, a disease that had never before been documented in Haiti. Studies of the outbreak indicate that poor sanitation at a United Nations camp resulted in sewage contamination of local water supplies, and phylogenetic analysis of the Haiti V. cholerae strains and strains from around the globe indicate the strain was most likely accidentally brought to the camp by U.N. troops from Nepal.

Earlier "fingerprinting" of Haiti's V. cholerae isolates using pulse-field gel electrophoresis (PFGE) has shown the bacterium has changed somewhat since the epidemic began in October 2010, but because of the nature of PFGE, the significance of those changes was not known. Were the changes meaningful? Were the bacteria gaining or losing genes that could impact the course of disease? Did they gain genes from other bacteria in the environment? Are their genomes rearranged? The answers could make a difference in the severity of future outbreaks.

The authors of the study in mBioฎ set out to study in greater detail how V. cholerae may have evolved since its introduction to the island nation, and whether it has acquired genes that bestow new abilities. They sequenced the genomes of 23 different V. cholerae isolates from Haiti that represent multiple PFGE "fingerprint" patterns and were taken from a variety of locations and at various time points during the epidemic.

When compared with the genome sequences of V. cholerae strains from around the world, the Haiti isolates and three Nepal isolates are tightly related, forming a monophyletic group to which no other genome sequences belong.

This result indicates that "Nepalese isolates are the closest relatives to the Haiti strain identified to date, even when placed into a phylogeny with a larger collection of isolates representing recent cholera epidemics," write the authors. This means that the outbreak originated from a single introduction of bacteria, and PFGE variants arose from gradual evolution of the organisms, not from any secondary introduction.

The Haiti strains also have a limited ability to acquire new genes through the process of transformation, by which genetic material is picked up from other bacteria or from the environment. There is some evidence that transformation is an important mechanism for bacteria to acquire the necessary abilities to adapt to a particular environment, so the fact that the Haiti strains are deficient in this respect raises the question of whether they will be able to adapt to life in Haiti or if they might go extinct once the epidemic has ended.

The Haiti isolates belong to a type of V. cholerae called "Atypical El Tor" strains, a group that, in locations in Asia and Africa, has managed to acquire multidrug resistance and enhanced virulence traits that result in higher infection rates and harsher symptoms. The authors argue that to avert larger and more difficult to treat outbreaks of cholera, it is necessary to track the ongoing and unpredictable evolution of the organism in Haiti and elsewhere with surveillance of V. cholerae via tools like whole genome sequencing.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Microbiology. "Genomes of cholera bacteria from Haiti confirm epidemic originated from single source." ScienceDaily. ScienceDaily, 2 July 2013. <www.sciencedaily.com/releases/2013/07/130702100802.htm>.
American Society for Microbiology. (2013, July 2). Genomes of cholera bacteria from Haiti confirm epidemic originated from single source. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2013/07/130702100802.htm
American Society for Microbiology. "Genomes of cholera bacteria from Haiti confirm epidemic originated from single source." ScienceDaily. www.sciencedaily.com/releases/2013/07/130702100802.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins