Featured Research

from universities, journals, and other organizations

World record in silicon integrated nanophotonics: More energy efficiency in the data communication

Date:
July 3, 2013
Source:
University of Stuttgart
Summary:
Researchers have achieved a new world record in the energy efficient integration in silicon. This is an important step to decrease the energy consumption of data transfer in internet and telecommunication. The researchers optimized aperiodic grating couplers in the nanometer range with a new developed backside metal mirror. Through this new method a record coupling efficiency of 87 percent between optical fibers and photonic integrated waveguides on silicon wafers has been achieved.

Microscopic picture of a fabricated silicon chip and two optical fibers above grating structures to couple the light into and out of the chip.
Credit: Image courtesy of University of Stuttgart

Researchers of the Institute of Electrical and Optical Communications Engineering (INT) at the University of Stuttgart and the Institut für Mikroelektronik Stuttgart (IMS CHIPS) achieved a new world record in the energy efficient integration in silicon. This is an important step to decrease the energy consumption of data transfer in internet and telecommunication. The researchers optimized aperiodic grating couplers in the nanometer range with a new developed backside metal mirror. Through this new method a record coupling efficiency of 87 percent between optical fibers and photonic integrated waveguides on silicon wafers has been achieved.

The internet and telecommunications are based on an optical core network that connects cities worldwide using glass fibers. These can carry light with very low losses over long distances. Based on a study published by CISCO, the mobile data transfer (smartphones) will solely increase from 885 petabytes per month (end of 2012) up to ten exabytes per month in the year 2017. To avoid a similar increasing energy consumption of our telecommunication systems, more efficient networks have to be developed, which represents nowadays a very interesting and actual research field.

Researchers of the INT and IMS CHIPS have developed a fabrication process to realize complex sender and receiver structures that are integrated on silicon wafers. Hitherto existing optical senders and receivers are based on indium phosphide substrates, which are available only in small dimensions and to very high costs. Experts predict that optical connections will be necessary in the home computer of the year 2020 to exchange the huge amount of data between individual components of the computer. The used light has a frequency of around 192 Terahertz and hence can offer bandwidths of several Terahertz and data rates beyond 1 Terabit/s. Thus, worldwide researchers try to develop new components to make use of these tremendous data rates in commercial products. Since silicon is transparent at the used light frequency, this material can be utilized in waveguiding structures. Computing based on photons in nanoelectronic circuits can be then achieved in future computer components.

For this purpose light has to be efficiently guided in silicon waveguides and coupled from one component to another. The resulting energy losses have to be kept as small as possible. Researchers of the University of Stuttgart achieved a new world record in coupling efficiency between optical fibers and integrated silicon waveguides based on the new developed aperiodic grating coupler structures that are fabricated using the technology process of IMS CHIPS. With a record of 87 percent and a bandwidth of around 40 nm the new structures can pave the way for more efficient integration of optical senders and receivers in silicon.

In this complementary-metal-oxide-semiconductor fabrication process other components such as polarization beam splitters based on grating structures are also realized. The University of Stuttgart and IMS CHIPS achieved here as well promising results, which makes them leading in the integration of optical components in silicon. The researches will be concretized in commercial products with the support of industrial partners to achieve cost effective integrated senders and receivers in silicon that enable data rates beyond 1 Terabit/s.

The results will be published in September at the European Conference on Optical Communications in London.


Story Source:

The above story is based on materials provided by University of Stuttgart. Note: Materials may be edited for content and length.


Cite This Page:

University of Stuttgart. "World record in silicon integrated nanophotonics: More energy efficiency in the data communication." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703101349.htm>.
University of Stuttgart. (2013, July 3). World record in silicon integrated nanophotonics: More energy efficiency in the data communication. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/07/130703101349.htm
University of Stuttgart. "World record in silicon integrated nanophotonics: More energy efficiency in the data communication." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703101349.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins