Featured Research

from universities, journals, and other organizations

Thin-film diamonds: Applying diamond coatings at lower temperatures expands options for electronic devices

Date:
July 3, 2013
Source:
American Institute of Physics
Summary:
Scientists report a new method for creating thin films of diamonds. This may allow manufacturers to enhance future electronics.

A new method for creating thin films of diamonds, which is described in the journal Applied Physics Letters, produced by AIP Publishing, may allow manufacturers to enhance future electronics.

Related Articles


In industrial and high-tech settings, diamonds are particularly valued for their hardness, optical clarity, smoothness, and resistance to chemicals, radiation and electrical fields. For electronics applications, researchers "dope" diamonds in order to make them conductive, introducing the semiconductor boron into the diamond manufacturing process. In the past, it has been a challenge to imbue electronic devices with diamond-like qualities by applying a doped diamond coating, or thin film because the high temperatures required to apply a doped diamond thin film would destroy sensitive electronics, including biosensors, semiconductors, and photonic and optical devices.

In their Applied Physics Letters paper, a team of researchers at Advanced Diamond Technologies, Inc., in Romeoville, Illinois report creating thin films of boron-doped diamond at temperatures low enough (between 460-600C) to coat many of these devices.

While low-temperature deposition of boron-doped diamond thin films is not conceptually new, the research team found no evidence in the literature of such diamond films that had both sufficient quality and manufacturing rates fast enough to be commercially useful. Tweaking their own normal-temperature boron doping recipe by both lowering the temperature and adjusting the typical ratio of methane to hydrogen gas yielded a high quality film without appreciable change in conductivity or smoothness compared to diamond films made at higher temperatures. The researchers say more data and study is needed to better understand low-temperature opportunities.

Even so, by further optimizing the recipe, the researchers expect to be able to deposit boron-doped diamond thin films at temperatures even lower than 400 C.

"The lower the deposition temperature, the larger number of electronic device applications we can enable," said Hongjun Zeng of Advanced Diamond Technologies, Inc. "That will further expand the product categories for thin, smooth, conductive diamond coatings," Zeng added.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hongjun Zeng, Prabhu U. Arumugam, Shabnam Siddiqui, John A. Carlisle. Low temperature boron doped diamond. Applied Physics Letters, 2013; 102 (22): 223108 DOI: 10.1063/1.4809671

Cite This Page:

American Institute of Physics. "Thin-film diamonds: Applying diamond coatings at lower temperatures expands options for electronic devices." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703105536.htm>.
American Institute of Physics. (2013, July 3). Thin-film diamonds: Applying diamond coatings at lower temperatures expands options for electronic devices. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2013/07/130703105536.htm
American Institute of Physics. "Thin-film diamonds: Applying diamond coatings at lower temperatures expands options for electronic devices." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703105536.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins