Featured Research

from universities, journals, and other organizations

Device physics: Simulating electronic smog

Date:
July 3, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A mathematical model that predicts the electromagnetic radiation produced by circuit boards could help to improve designs and lower costs.

A mathematical model that predicts the electromagnetic radiation produced by circuit boards could help to improve designs and lower costs.

Related Articles


A research team from A*STAR and Samsung Electronics has developed a fast and accurate way to estimate the electromagnetic emissions from printed circuit boards that could help designers to ensure that devices meet regulatory standards.

Circuits that carry rapidly changing electrical currents can generate unwanted electromagnetic waves, wasting energy, causing interference with other electrical equipment, and potentially posing health risks to users. To ensure that such emissions are within acceptable limits, electronic products such as mobile phones and laptops must undergo tests for this 'electronic smog' before they can be marketed.

Those tests have traditionally been done in large rooms designed to capture all the electromagnetic waves emitted from the device, explains Wei-Jiang Zhao of A*STAR's Institute of High Performance Computing, Singapore, who led the study. An alternative to this costly process involves scanning the electromagnetic field very close to the device's circuit boards (the near field), and then calculating the resulting radiation at a distance (the far field). But those calculations can take powerful computers many hours to complete.

The mathematical model developed by Zhao and co-workers translates near-field measurements into an accurate estimate of far-field radiation in less than 10 minutes on a standard desktop computer. "Our simulation technique could help to shorten the product design cycle, save laboratory space, and reduce product development cost," says Zhao.

The researcher's model mathematically mimics the readings from a scan of the near-field above a printed circuit board. Their simulation relies on a series of virtual magnetic dipoles -- effectively tiny, imaginary bar magnets -- that collectively replicate the variations in the measured magnetic field.

The simulation runs iteratively, each time altering the magnetic dipoles so that they fit the data better. This process of 'differential evolution' eventually produces a solution that is a sufficiently close match to the circuit-board's near field. The researchers then use those magnetic dipoles to simplify their calculation of the far-field radiation produced by the device.

The researchers tested their model using simulated near-field data from a thin, L-shaped metal strip laid on a small circuit board. The data contained 1,273 sample points, each 10 millimeters above the board. The model could approximate this magnetic field using just a few virtual magnetic dipoles. The match improved as they added more dipoles, until they reached very good agreement at nine dipoles -- adding a tenth did not significantly improve the match. The team is now working to refine the system to make it suitable for use by the electronics industry.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei-Jiang Zhao, Bin-Fang Wang, En-Xiao Liu, Hark Byeong Park, Hyun Ho Park, Eakhwan Song, Er-Ping Li. An Effective and Efficient Approach for Radiated Emission Prediction Based on Amplitude-Only Near-Field Measurements. IEEE Transactions on Electromagnetic Compatibility, 2012; 54 (5): 1186 DOI: 10.1109/TEMC.2012.2215874

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Device physics: Simulating electronic smog." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703113429.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, July 3). Device physics: Simulating electronic smog. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2013/07/130703113429.htm
The Agency for Science, Technology and Research (A*STAR). "Device physics: Simulating electronic smog." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703113429.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins