Featured Research

from universities, journals, and other organizations

Where do astronauts go when they need 'to go?'

Date:
July 10, 2013
Source:
American Physiological Society (APS)
Summary:
The first American man in space had no place "to go," and urinating in space was a tough problem for engineers to solve. A new article discusses the considerations necessary to accommodate this most basic physiological function.

NASA researchers sought to design a way to contain urine in the inevitable event that future astronauts would need 'to go' while wearing their spacesuits.
Credit: NASA

Alan Shepard became the first American to fly in space on May 5, 1961. Although NASA engineers had put considerable planning into his mission, dubbed Freedom 7, noticeably missing from this extensive preparation was a way for him to urinate in his spacesuit. During a lengthy launch delay, the inevitable happened, and Shepard's urine short-circuited his electronic biosensors. In less than a year, engineers had remedied this seeming oversight for John Glenn's Mercury orbital flight. The system developed for Glenn stood the test of time, remaining in use until the early days of the Space Shuttle program.

In a new article, Hunter Hollins of the National Air and Space Museum reviews the history of urine collection in space and the considerations necessary to accommodate this basic physiological function. That first successful urine collection device, used in 1962, has been on display at the National Air and Space Museum since 1976.

The new article, titled "Forgotten Hardware: How to Urinate in a Spacesuit," appears in the June 2013 edition of Advances in Physiology Education, a journal published by the American Physiological Society

No Need "To Go?"

Hollins writes that though the general public was interested in how astronauts would tackle taking care of this basic need in space (a letter stored in NASA's Historical Reference Collection from a Pennsylvania schoolgirl questioned where the first man in space would use the toilet), NASA's scientists and technicians seemed to ignored the problem before Shepard's mission. Combined with a lack of funding and little crosstalk between the organizations that would end up comprising NASA, scientists in the organization also assumed that the first astronauts would be able to "hold it" during their very short missions.

However, though Shepard's spaceflight was scheduled to last only 15 minutes, he spent eight hours in his spacesuit due to launch delays. During a four-hour stint on the launch pad, he relieved himself in the suit, damaging the electronic medical data sensors attached to his body.

After this understandable event, NASA researchers sought to design a way to contain urine in the inevitable event that future astronauts would need to go while wearing their spacesuits.

New Device a Relief for Astronauts

Working around the spacesuit itself was one barrier to successful urine collection. The pressure suits worn by astronauts help keep their occupants alive during spaceflight by ensuring that pressures inside stay within a healthy physiological range. However, the bulky, uncomfortable suits left little room for devices to capture urine.

The first iteration of urine collection devices proposed for space were in-dwelling catheters, a tube threaded through the penis to collect urine continuously from the bladder. However, such catheters are extremely uncomfortable and greatly increase the risk of infection.

After Gus Grissom's Mercury-Redstone 4 mission followed Shepard's in 1961 -- in which Grissom urinated between two pairs of rubber pants -- NASA researchers set about developing a more suitable urine collection device. They ended up basing theirs on the simple personal urinals already available at the time for people with medical problems, such as impaired bladder control, or those without access to public urinals, such as police officers on a long shift.

In the end, the resulting device resembled a condom made out of more durable materials and open on one end, with a tube connected to a storage container. On Glenn's Mercury-Atlas 6 mission, he voided a full bladder into the new device, confirming its utility.

Tweaks Still Necessary

Astronauts regularly used this type of device with minimal modifications until the early days of the Space Shuttle program, Hollins writes. However, those and modern urine collection devices still aren't perfect. Hollins notes that in a survey done in 2010, the majority of U.S. Air Force pilots flying high altitude spy planes reported problems with the urine collection devices they wore, including poor fit, leaking, and skin damage from extended contact with urine.

"It is the job of the engineer/physiologist to ensure that the man-machine interface promotes the health and safety of the human body," Hollins says.


Story Source:

The above story is based on materials provided by American Physiological Society (APS). Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Hollins. Forgotten hardware: how to urinate in a spacesuit. AJP: Advances in Physiology Education, 2013; 37 (2): 123 DOI: 10.1152/advan.00175.2012

Cite This Page:

American Physiological Society (APS). "Where do astronauts go when they need 'to go?'." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710103119.htm>.
American Physiological Society (APS). (2013, July 10). Where do astronauts go when they need 'to go?'. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/07/130710103119.htm
American Physiological Society (APS). "Where do astronauts go when they need 'to go?'." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710103119.htm (accessed July 29, 2014).

Share This




More Space & Time News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins