Featured Research

from universities, journals, and other organizations

Dye-sensitized solar cells rival conventional cell efficiency

Date:
July 10, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Dye-sensitized solar cells rival conventional photovoltaic devices by getting an efficiency boost up to 15 percent thanks to a new solid-state version of the perovskite light harvester device and a two-step fabrication process developed by scientists in Switzerland.

This is Michael Grätzel holding one of his dye-sensitized solar cells
Credit: © Alain Herzog/EPFL

Dye-sensitized solar cell efficiency has been raised to a record 15% thanks to a new fabrication process developed by EPFL scientists in Switzerland.

Dye-sensitized solar cells (DSSCs) have many advantages over their silicon-based counterparts. They offer transparency, low cost, and high power conversion efficiencies under cloudy and artificial light conditions. However, until now their overall efficiency has been lower than silicon-based solar cells, mostly because of the inherent voltage loss during the regeneration of the sensitizing dye. In a Nature publication, EPFL scientists have developed a state solid version of the DSSC that is fabricated by a new two-step process raising their efficiency up to a record 15% without sacrificing stability.

The new solid-state embodiment of the DSSC uses a perovskite material as a light harvester and an organic hole transport material to replace the cell's electrolyte. Typical fabrication of this new DSSC involves depositing a perovskite material directly onto a metal-oxide film. The problem is that adding the entire material together often causes wide variation in the morphology and the efficiency of the resulting solar cell, which makes it difficult to use them in everyday applications.

Michael Grätzel's team at EPFL has now solved the problem with a two-step approach: First, one part of the perovskite is deposited in to the pores of the metal-oxide scaffold. Second, the deposited part is exposed to a solution that contains the other component of the perovskite. When the two parts come into contact, they react instantaneously and convert into the complete light-sensitive pigment, permitting much better control over the morphology of the solar cell.

The new method raises DSSC power-conversion efficiency up to a record 15%, exceeding the power conversion efficiencies of conventional, amorphous silicon-based solar cells. The authors believe that it will open a new era of DSSC development, featuring stability and efficiencies that equal or even surpass today's best thin-film photovoltaic devices.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. The original article was written by Nik Papageorgiou. Note: Materials may be edited for content and length.


Journal Reference:

  1. Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, Michael Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013; DOI: 10.1038/nature12340

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Dye-sensitized solar cells rival conventional cell efficiency." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710141850.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, July 10). Dye-sensitized solar cells rival conventional cell efficiency. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/07/130710141850.htm
Ecole Polytechnique Fédérale de Lausanne. "Dye-sensitized solar cells rival conventional cell efficiency." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710141850.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins