Featured Research

from universities, journals, and other organizations

Sculpting flow: Supercomputers help microfluidics researchers make waves at the microscopic level

Date:
July 12, 2013
Source:
University of Texas at Austin, Texas Advanced Computing Center
Summary:
Researchers have discovered a new way of sculpting tailor-made fluid flows by placing microscale pillars in microfluidic channels. The method could allow clinicians to better separate white blood cells in a sample, increase mixing in industrial applications, and more quickly perform lab-on-a-chip-type operations.

Exploring the phase space of fluid deformations using high throughput computing: Each configuration of microfluidic system (pillar diameter, channel height, and flow speed) results is a specific fluid deformation. XSEDE resources were used to classify these deformations. Such classification is fundamental to subsequent fluid sculpting.
Credit: Image courtesy of University of Texas at Austin, Texas Advanced Computing Center

Have you ever noticed the way water flows around boulders in a fast-moving river, creating areas of stillness and intense motion? What if those forces of fluid flow could be controlled at the smallest levels?

In May 2013, researchers from UCLA, Iowa State and Princeton reported results in Nature Communications about a new way of sculpting tailor-made fluid flows by placing tiny pillars in microfluidic channels. By altering the speed of the fluid, and stacking many pillars, with different widths, placements and orientations, in the fluid's path, they showed that it is possible to create an impressive array of controlled flows.

Why does this matter?

Because such a method will allow clinicians to separate white blood cells from other cells in a blood sample, increase mixing in industrial applications, and more quickly perform lab-on-a-chip-type operations, like DNA sequencing and chemical detection. Each of these could form the foundation for a multi-million dollar industry. Together, they could revolutionize microfluidics.

"Most microfluidic flow is at a very low speed," said Baskar Ganapathysubramaniam, assistant professor of mechanical engineering at Iowa State and one of the lead researchers. "At that speed, the flow hugs the cylinder and there's fore-aft symmetry. Whatever's happening upstream is exactly mirrored downstream. But if you increase the speed -- or more technically, the Reynolds number -- slightly, you can break this symmetry and get wakes, vortices, and non-trivial deformations." All of which create distinct flows.

Hashing out the idea with Dino Di Carlo, associate professor of bioengineering at UCLA, the two researchers asked themselves if they could control the flow of fluids in microfluidic channels by placing pillars in specific locations in the path. Using both experimental methods and numerical simulations, they explored the possibilities offered by this approach and found that they could indeed create a range of predictable flows.

"Each pillar has a unique deformation signature to it," Ganapathysubramaniam said. "By stacking these pillars together, we can create an astounding variety of deformations, and these can be tuned for specific purposes."

"Engineering tools like this allow a scientists to easily develop and manipulate a flow to a shape of their interest," Di Carlo said. "There hasn't been that platform available in the fluids community."

The equations used to determine the fluid flows are fairly straightforward, but the number of configurations needed to solve the problem required them to use the Ranger supercomputer at the Texas Advanced Computing Center (TACC). Ranger, funded by the National Science Foundation (NSF), served the national open science community for five years and was replaced by Stampede (the sixth most powerful supercomputer in the world) in January 2013.

Using several thousand processors concurrently, the researchers ran more than a 1,000 different problems, each representing a combination of different speeds, thicknesses, heights or offsets.

"Each of these gives us one transformation and together, they form what we call a library of transformations," DiCarlo described.

With this method, Ganapathysubramaniam says it's possible to create a sequence of pillars that would push white cells to the boundaries of a channel to separate them, and then return them to the center to be recaptured. He is also excited to study the potential of pillars to enhance mixing, which would be useful for removing heat from microprocessor fabrication as well as nano- and micro-scale controlled manufacturing.

Eventually, DiCarlo and Ganapathysubramanian want to crowd-source the identification of critical flow transportations that will have implications to industry.

"Once we have the library, we envision creating a video game where we ask the player to design a specific kind of flow transformation," Ganapathysubramaniam explained. "They pick different pillars, stack them together, and see if they can get that configuration."

It's this kind of out-of-the-box thinking that characterizes the Iowa State scientist's research. Recently, partnering with Manish Parashar, the director of the Rutgers Discovery Informatics Institute (RDI2) at Rutgers University, and with Rutgers research professor Jaroslaw Zola, Ganapathysubramaniam undertook another experiment typical of his knack for creative problem-solving.

Using Federated Computing enabled by CometCloud, the project brought together a team of researchers with access to 10 supercomputers at six high performance computing (HPC) centers across three continents to continue and extend Ganapathysubramaniam's microfluidics simulations. The consortium included TACC's new Stampede system, as well as resources from the Department of Energy, FutureGrid, and international HPC centers.

Using the Comet Cloud, the researchers ran 12,845 flow simulations, consuming more than 2.5 million core-hours and generating 400 gigabytes of data over the course of 16 days.

"The experiment allowed us to explore an alternate paradigm for doing computational science and demonstrate that we can support applications using this paradigm," Parashar said. "Many applications have a similar workflow so this could be a model for supporting researchers without all of them going to one resource or another. This could be used to provide compute resources to a wide-range of applications."

The computations enabled by CometCloud brought Ganapathysubramaniam halfway to his dream of a complete library of microscopic fluid flows. However, the entire library would take much more computing. Fortunately, supercomputers are getting relentlessly faster, and with new technologies come new opportunities for industry, science and medicine.

Further information: http://nsfcac.rutgers.edu/CometCloud/uff/


Story Source:

The above story is based on materials provided by University of Texas at Austin, Texas Advanced Computing Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin, Texas Advanced Computing Center. "Sculpting flow: Supercomputers help microfluidics researchers make waves at the microscopic level." ScienceDaily. ScienceDaily, 12 July 2013. <www.sciencedaily.com/releases/2013/07/130712161059.htm>.
University of Texas at Austin, Texas Advanced Computing Center. (2013, July 12). Sculpting flow: Supercomputers help microfluidics researchers make waves at the microscopic level. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/07/130712161059.htm
University of Texas at Austin, Texas Advanced Computing Center. "Sculpting flow: Supercomputers help microfluidics researchers make waves at the microscopic level." ScienceDaily. www.sciencedaily.com/releases/2013/07/130712161059.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins