Featured Research

from universities, journals, and other organizations

Using bacteria batteries to make electricity

July 17, 2013
Universitaet Bielefeld
Their idea is state of the art: Students have set their sights on constructing a bio-battery. They want to make use of the bacteria Escherichia coli to convert glucose into energy.

Their idea is state of the art: Ten Bielefeld students have set their sights on constructing a bio-battery. They want to make use of the bacteria Escherichia coli to convert glucose into energy. With this project, they are taking part in this year's 'international Genetically Engineered Machine competition' (iGEM) at the Massachusetts Institute of Technology (MIT) in Boston, USA. Since May, they have been spending a lot of their free time in the laboratory in order to realise their idea. Now that the first test results are available, the project enters an important phase.

Related Articles

Student Thorben Meyer explains how he and his fellow team members came up with the idea for the project: 'There is an ever-increasing demand for sources of alternative energy. The conservation of fossil fuels and the phasing out of nuclear energy in Germany have sped this process up.' Another consideration was the environmental pollution caused by conventional batteries. 'It is not only large-scale electricity production which pollutes the environment, but also household batteries, which contain many harmful substances. Heavy metals and dangerous inorganic and organic electrolytes can be released into the environment by improper handling of batteries.'

Bio-batteries as an alternative source of energy

For these reasons the aim of the Bielefeld iGEM team is to develop an environmentally friendly bio-battery (Microbial fuel cell -- MFC), which directly transforms bacteria into energy. Batteries such as these work in the same way as conventional batteries, but with one difference. The MFC consists of two separate units, the anode and the cathode components, just like the batteries now in current household use. A partly permeable membrane separates the two areas. In contrast to conventional batteries, however, there are bacteria in the anode area of the bio-battery instead of electrolytes. These break down substrates, in this case glucose, in a metabolic process. This produces electrons that after starting from the anode are finally delivered in an external loop to the cathode. The external circuit is then the one with the battery-powered application, for example, for lights or small motors. In this way, bacteria can produce electric energy. The bio-battery offers an array of advantages. Due to their simple construction they can be used in regions where there is shortage of electricity, for example, such as in developing countries. An advantage that the bio-battery has over other regenerative energy sources, such as solar and wind power is that they are not dependent on the weather. In the case of bio-batteries, the more nourishment the bacteria receive the more energy they produce. What is more, in theory bacteria are an inexhaustible source of energy as they multiply quickly when supplied with substrates.

In the laboratory, the Bielefeld students are investigating various bacterial organisms and their genetic components. Through the combination of differing genes it is possible to optimise the organism Escherichia coli with a view to produce electricity more efficiently. The students can already report initial successes: they have isolated various genes that serve to carry the electrons and begun to construct a suitable apparatus for the production of electricity. They would like to have an optimised bio-battery for small-scale use developed by the time the preliminary European round of the iGEM has been decided.

More than just laboratory work

In parallel to experimental work in the laboratory, the students are also supposed to present their project to the public. According to the competitions' criteria, the team is also expected to find sponsors: Participation fees, travel costs as well as accommodation are estimated to be around 20,000 Euros. The team members have been working on the ambitious project alongside their regular studies. What is it that motivates the ten Molecular Biotechnology and Genome-Based Systems Biology students to be so dedicated? 'The work at iGEM offers the chance to single-mindedly see a project through and to measure up to outstanding young scientists', Nadiya Romanova says. 'Besides, by participating in this world-wide competition it is possible to get an impression of research processes and innovation in the area of synthetic biology whilst still a student. The iGEM team in Bielefeld has support from Professor Dr. Alfred Pόhler, Professor Dr. Erwin Flaschel, Dr. Jφrn Kalinowski as well as Dr. Christian Rόckert from CeBiTec (Center for Biotechnology) from Bielefeld University.

Extensive and fierce competition

The iGEM competition has been hosted annually at MIT since 2004. What started as a course at MIT has steadily attracted more and more participants, from five teams in 2004 to over 210 this year. 'Internationally, iGEM is the most important student competition in synthetic biology. Its form makes it unique in the world,' sums up Dr Kalinowski. 'Synthetic biology is the latest development in the field of modern biology, and participation in the competition opens the students up to new perspectives. They also have the opportunity to prove themselves against young scientists from around the world. 'The European first round takes place in Lyon, France, from 11 to 13 October. There it will be decided which European teams will go to Boston to take part in the final. This is the fourth year in a row that Bielefeld University has taken part in the competition, successfully presenting itself in Boston from 2010 to 2012. In the previously two years Bielefeld scientists were amongst the best 16 teams in the world.

Story Source:

The above story is based on materials provided by Universitaet Bielefeld. Note: Materials may be edited for content and length.

Cite This Page:

Universitaet Bielefeld. "Using bacteria batteries to make electricity." ScienceDaily. ScienceDaily, 17 July 2013. <www.sciencedaily.com/releases/2013/07/130717051733.htm>.
Universitaet Bielefeld. (2013, July 17). Using bacteria batteries to make electricity. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2013/07/130717051733.htm
Universitaet Bielefeld. "Using bacteria batteries to make electricity." ScienceDaily. www.sciencedaily.com/releases/2013/07/130717051733.htm (accessed April 18, 2015).

Share This

More From ScienceDaily

More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) — NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) — American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) — Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) — New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins