Featured Research

from universities, journals, and other organizations

Researchers get better metrics on laser potential of key material

Date:
July 25, 2013
Source:
North Carolina State University
Summary:
Researchers have developed more accurate measurements of how efficiently a polymer called MEH-PPV amplifies light, which should advance efforts to develop a new generation of lasers and photonic devices.

Researchers from North Carolina State University have developed more accurate measurements of how efficiently a polymer called MEH-PPV amplifies light, which should advance efforts to develop a new generation of lasers and photonic devices.

"By improving our understanding of this material, we get closer to the longstanding industry goal of using MEH-PPV to create cheaper, more flexible photonic technologies," says Dr. Lewis Reynolds, a teaching associate professor of materials science and engineering at NC State and senior author of a paper describing the research. MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have long sought to use the material to convert electricity into laser light for use in photonic devices such as optical amplifiers and chemical sensors.

At issue is MEH-PPV's "optical gain," which is a way of measuring how effectively a material can amplify light. Understanding a material's optical gain is essential to laser development.

Researchers determine the optical gain of MEH-PPV by pulsing laser light into the material and measuring the light that the MEH-PPV then produces in response. The NC State team used extremely short laser pulses -- 10 laser pulses per second, with each pulse lasting only 25 picoseconds. To get a grasp of how short those pulses were, it's worth noting that a picosecond is one trillionth of a second.

Previous efforts to determine MEH-PPV's optical gain produced inaccurate results because they used laser pulses that lasted one thousand times longer.

"The longer pulses caused thermal degradation in the MEH-PPV, meaning they led to structural and molecular changes in the material," says Dr. Zach Lampert, a former Ph.D. student at NC State and lead author of the paper. "Essentially, the longer laser pulses were heating the polymer. We were able to minimize these thermal degradation effects, and get a more accurate measurement, by using the picosecond pulses."

"Our new approach is fairly straightforward and can be easily implemented elsewhere," Reynolds says.

The paper, "Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation," is published online in Applied Physics Letters. Co-authors include Dr. Simon Lappi of NC State and Dr. John Papanikolas of the University of North Carolina at Chapel Hill.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zach E. Lampert, Simon E. Lappi, John M. Papanikolas, C. Lewis Reynolds. Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation. Applied Physics Letters, 2013; 103 (3): 033303 DOI: 10.1063/1.4816040

Cite This Page:

North Carolina State University. "Researchers get better metrics on laser potential of key material." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725125407.htm>.
North Carolina State University. (2013, July 25). Researchers get better metrics on laser potential of key material. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/07/130725125407.htm
North Carolina State University. "Researchers get better metrics on laser potential of key material." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725125407.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins